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Abstract

Math word problem (MWP) solving faces a dilemma in number representation
learning. In order to avoid the number representation issue and reduce the search
space of feasible solutions, existing works striving for MWP solving usually
replace real numbers with symbolic placeholders to focus on logic reasoning.
However, instead of the number value itself, it is the reusable numerical property
that matters more in numerical reasoning. Therefore, we argue that injecting
numerical properties into symbolic placeholders with contextualized representation
learning schema can provide a way out of the dilemma in the number representation
issue here. In this work, we introduce this idea to the popular pre-training language
model (PLM) techniques and build MWP-BERT, an effective contextual number
representation PLM. We demonstrate the effectiveness of our MWP-BERT on
MWP solving and several MWP-specific understanding tasks on both English and
Chinese benchmarks.

1 Introduction

MWP solving system aims to perform symbolic reasoning by searching through a combinatorial
solution space given the text description evidence. Despite the great performance achieved by the
previous methods, there still exists fundamental challenges in number representation for MWP
solving. More exactly, number values are required to be considered as vital evidence in solution
exploration but existing works are known to be inefficient in capturing numeracy information Wallace
et al. [2019]. Intuitively, we could simply treat explicit numbers in the same way with words, i.e.,
assign position for all numbers in the vocabulary. However, there would be an infinite number of
candidates during prediction and it would be impossible to learn their deep representations. In other
words, the solution space will be extremely large and the complexity is unacceptable. Therefore,
almost all existing works follow the number mapping technique Wang et al. [2017] to replace all
numbers with symbolic placeholders (e.g., “x1”, “x2”). The core idea here is to get a reasonable
solution space by restricting neural networks to leave out numerical characteristics and focus on logic
reasoning. However, most of the current MWP solvers do not consider the background knowledge in
the context and are usually inefficient in capturing numeracy properties. An example is shown in
Fig. 1. Small perturbations in the problem description actually bring large variations in reasoning
logic and equation. If the model simply regards “75” and “10%” as the same placeholder “x3”, and
does not notice the small variation in the context, a wrong solution will be generated.

To this end, a group of numeracy grounded pre-training objectives is designed to leverage the
corpus of MWP and encourage the contextual representation to capture numerical information.
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Text: Some workers are producing 660 clothes. It has been 5 days and 75 clothes 
are produced per day. But they have to finish all clothes in 3 more days. How 
many clothes should be processed per day from now?

Equation: (660 − 75×5) ÷ 3

Reasoning Logic:

Text: Some workers are producing 660 clothes. It has been 5 days and 10% of
the total clothes are produced per day. But they have to finish all clothes in 3
more days. How many clothes should be processed per day from now?

Equation: 660× 1 − 10%×5 ÷ 3

Reasoning Logic:
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Figure 1: The second question is obtained from
the first one by minor modifications. However,
their solution equation and corresponding equa-
tion tree structure are different from each other.
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Figure 2: The overall architecture of our BERT-
based MWP solver. Our method enables the
solver to learn from unlabeled, incompletely
labeled and fully labeled MWPs by different
pre-training tasks.

Experiments conducted on both Chinese and English benchmarks show the significant improvement
of our proposed approach over all competitors.

2 Method

An overview of pre-training objectives and our model architecture is shown in Figure 1. In general,
pre-training objectives are designed to inject contextual priori and numerical properties as soft
constraints for representation learning. They are categorized into three types given provided training
signals, i.e., self-supervised, weakly-supervised, and fully-supervised.

2.1 Self-supervised Objectives

In this part, we only consider input text descriptions for each example. Also, these objectives can
alleviate the costs of collecting MWP corpus by constructing supervision signals without solution
answers and equations.

Masked Language Modeling. We follow Devlin et al. [2019] and introduce masked language
modeling (MLM) for basic contextual representation modeling. Specially, we apply masks on 10%
of tokens, randomly replace 10% of tokens with other tokens and keep 80% of tokens unchanged.
Later, the manipulated sentence is utilized to reconstruct the original sentence.

Number Counting. Another pre-training objective is to predict the number of numbers that
appeared in MWP description. The amount of a number corresponds with the cardinality of variable
sets. This also reflects the basic understanding of the difficulty of an MWP and can act as a key
contextual MWP number understanding feature.

Number Type Grounding. This objective aims at linking contextual number representations with
corresponding number types to tell the difference between discrete and continuous concepts/entities.
For numerical reasoning in MWP solving, we only need to handle whole numbers as well as non-
integer numbers (decimal, fraction and percentage). Ideas here are that whole numbers usually
associate with discrete entities (for example, desks, chairs and seats) while non-integer numbers often
connect with continuous concepts (for example, proportions, rate, velocity). Besides, comparisons
among whole numbers got different issues compared with rational numbers. Therefore, we propose a
classification objective to predict if a number is a whole number or a non-integer number.
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2.2 Weakly-supervised Objectives

Given both text descriptions of MWPs and corresponding value answers, we can model dependencies
among answer number and numbers in text descriptions so that contextual representation perceive
the existence of the target variable number that does not appear in the text descriptions. In detail,
we design 3 novel pre-training objectives specializing in value-annotated MWPs to improve number
representation in our MWP-BERT.

Answer Type Prediction. Determining the type of answer number can provide us discrete/continu-
ous nature of the target entity/concept. Thus, we want to predict the type (whole/non-integer) of the
answer value given global representations of an MWP.

Context-Answer Type Comparison. Besides the global context feature, an MWP-BERT also
needs to associate context numbers and answer numbers (the target number does not explicitly appear
in the text). Thus, another objective is proposed to predict if the quantities appeared in the MWP text
fall into the same category as the answer (i.e. they are all whole or non-integer).

Number Magnitude Comparison. Beyond type, the magnitude of a number serves as the founda-
tion of numerical reasoning. By associating magnitudes evaluation with contextual representation,
the model can get a better perception of variance over key reasoning cues like time, size and intensity.

2.3 Fully-supervised Objectives

Given both equations and answers for MWPs, we can design fully-supervised training tasks to
associate number representation with reasoning flows (solution equation). Mathematical equations
are known to be binary tree structures with operators on root nodes and numbers on leaf nodes. The
motivation is to encourage models to learn structure-aware number representations that encode the
information on how to make combinations over atomic operators and numbers. We incorporate two
pre-training objectives based on the solution equation tree.

Operation Prediction. The first one is a quantity-pair relation prediction task that focuses on the
local feature of the equation tree. The goal is to predict the operator between two quantity nodes in
the solution tree. This is in fact a classification task with 5 potential targets, i.e., +,−,×,÷ and ∧.

Tree Distance Prediction. Another pre-training objective is to incorporate the global structure of
the equation tree in a quantitative way. Inspired by Hewitt and Manning [2019], we consider the
depth of each number and operator on the corresponding binary equation tree to be the key structure
priori. Thus, we design another fully-supervised objective to utilize this information. More exactly,
given the representation of two number nodes in an equation tree, this is a regression problem that
predicts the distance (difference of their depth) between them.

3 Experiment

For the Chinese initial model, we use an upgraded patch of Chinese BERT which is pre-trained with
the whole word masking (WWM)1 Cui et al. [2020]. For the English pre-training models, we use the
official source on this website2.

3.1 Dataset

We conduct experiment based on Math23k Wang et al. [2017], MathQA Amini et al. [2019] and
Ape-210k Zhao et al. [2020]. Since many noisy examples exist in Ape-210k, e.g., examples without
equation annotations or answer values, we re-organize Ape-210k to Ape-clean and Ape-unsolvable,
where the training set of Ape-clean and the whole Ape-unsolvable are used for pre-training. For the
English MWP, we use the training set of MathQA Amini et al. [2019] to perform pre-training.

1https://github.com/ymcui/Chinese-BERT-wwm
2https://huggingface.co/bert-base-uncased and https://huggingface.co/roberta-base
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3.2 Probing Evaluation

We re-run all the pre-training tasks as probing tasks to evaluate our modeling’s understanding ability
and test MWP-BERT in a zero-shot scenario, i.e. without fine-tuning the parameters of MWP-BERT
and MWP-RoBERTa for the sake of fair comparison. Besides, we borrow an MWP-specific sequence
labeling task, quantity tagging Zou and Lu [2019] (“QT”), to further compose MWP understanding
evaluation settings. Briefly speaking, this task requires the model to assign “+”, “-” or “None” for
every quantity in the problem description and can serve as an MWP understanding evaluation tool to
examine the model’s understanding of each variable’s logic role in the reasoning flow. We extract the
corresponding vectors of all quantities according to their positions in the encoded problem. Next, a
2-layer feed-forward block is connected to output the final prediction. Significant improvements can
be observed in Table 1, and demonstrate the effectiveness of our proposed pre-training techniques in
improving the number representation of PLMs.

NumCount NTGround ATPred CATComp NumMComp OPred TPred QT

Metric MSE ↓ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ MSE ↓ Acc ↑
BERT 3.08 0.87 0.75 0.77 0.77 0.50 0.97 84.5
RoBERTa 3.20 0.86 0.76 0.78 0.77 0.51 0.99 84.6
MWP-RoBERTa 0.69 0.92 0.86 0.87 0.86 0.86 0.44 91.0
MWP-BERT 0.67 0.92 0.85 0.87 0.86 0.87 0.45 91.5

Table 1: The evaluation results on MWP-specific understanding tasks. All tasks correspond to the
tasks mentioned in section 1. Note that the metric for 2 tasks is mean-squared-error, while others use
classification accuracy. “QT” stands for quantity tagging.

3.3 MWP Solving

Given a textual description of a mathematical problem, which contains several known variables,
MWP solving targets getting the correct answer for the corresponding question. A solver is expected
to be able to predict an equation that can exactly reach the answer value. We adapt our proposed
encoder with multiple different traditional solvers by replacing their RNN encoder with MWP-BERT
to show its generalization ability across various solvers. The results show that our MWP-BERT
outperforms vanilla BERT Devlin et al. [2019] and has great adaptivity on different solvers and we
successfully achieve state-of-the-art accuracy.

Math23k Math23k∗ MathQA
State-of-the-art Baselines

REAL Huang et al. [2021] 82.3 80.0 −
BERT-CL Li et al. [2021] 83.2 − 76.3
Gen&Rank Shen et al. [2021] 85.4 84.3 −
DeductiveReasoner Jie et al. [2022] 85.1 83.0 78.6

Adapting MWP-BERT
BERT Devlin et al. [2019] + GTS Xie and Sun [2019] 83.8 82.0 75.1
MWP-BERT + GTS Xie and Sun [2019] 84.7 82.4 76.2
MWP-BERT + Teacher Liang and Zhang [2021] 85.1 82.8 77.3
MWP-BERT + Graph2Tree Zhang et al. [2020b] 85.6 83.8 78.9

Table 2: Comparison of answer accuracy (%) among our proposed models and different baselines.
Math23k column shows the results on the public test set and Math23k∗ is 5-fold cross validation on
Math23k dataset. MathQA is adapated from Li et al. [2021], Tan et al. [2021]. “BERT” represent
results without our pre-training.

4 Conclusion

We propose MWP-BERT, an MWP-specific PLM model with 8 pre-training objectives to solve the
number representation issue in MWP. Experimental results show the superiority of our proposed
MWP-BERT across various downstream tasks on generation and understanding. In terms of the
most representative task MWP solving, our approach achieves state-of-the-art. Better numerical
understanding ability is also demonstrated in the probing evaluation. We believe that our study can
serve as a useful pre-trained pipeline and a strong encoder in the MWP community.
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Appendix

Related Works

Math Word Problems Solving. There exist two major types of MWP, equation set MWP Wang
et al. [2017], Zhao et al. [2020] and arithmetic MWP Qin et al. [2020], Huang et al. [2016]. This
work focuses on arithmetic MWP, which is usually paired with one unknown variable. Along the path
of the MWP solver’s development, the pioneer studies use traditional rule-based methods, machine
learning methods and statistical methods Yuhui et al. [2010], Kushman et al. [2014], Shi et al. [2015],
Koncel-Kedziorski et al. [2015]. Afterward, inspired by the development of sequence-to-sequence
(Seq2Seq) models, MWP solving has been formulated as a neurosymbolic reasoning pipeline of
translating language descriptions to mathematical equations with encoder-decoder framework Wang
et al. [2018, 2019], Li et al. [2019], Zhang et al. [2020b], Yu et al. [2021], Wu et al. [2021a]. By
fusing hard constraints into decoder Chiang and Chen [2018], Liu et al. [2019], Xie and Sun [2019],
Shen and Jin [2020], Zhang et al. [2020a], MWP solvers achieve much better performance then.
Several works propose to utilize multi-stage frameworks Wang et al. [2019], Huang et al. [2021],
Shen et al. [2021], Liang and Zhang [2021] to make more robust solvers. Also, several new works
made attempts to improve MWP solver beyond supervised settings Hong et al. [2021a,b].

Among all these previous studies, the most relevant ones to our work can be categorized into two
groups. First, it has been noted that number values and mathematical constraints play a significant
role in supporting numerical reasoning. Wu et al. [2021b] proposed several number value features to
enhance encoder and Qin et al. [2021] designed new auxiliary tasks to enhance neural MWP solvers.
Compared with their work, we first introduce pre-training language model (PLM) and concentrate on
representation learning to resolve numerical understanding challenges. Second, regarding the usage
of pre-training techniques for MWP solving, Shen et al. [2021] introduced BART-based Lewis et al.
[2020] MWP solver and incorporated specialized multi-task training for obtaining more effective
pre-training Seq2Seq models for MWP. Compared with them, our work focuses on the number
representation learning issue of MWP and achieves a more flexible pre-training representation
module for MWP solving, which can be applied in various MWP-related tasks other than solution
generation.

Numeracy-aware Pre-training Models. Number representation has been recognized as one of
the main issues in word representation learning. Existing methods make use of value, exponent,
sub-word and character methods Thawani et al. [2021] to obtain number representations for explicit
number values. These methods are known to be less effective in extrapolation cases like testing with
numbers not appearing in the training corpus.

Previous related works Andor et al. [2019], Wallace et al. [2019], Geva et al. [2020] mainly focus on
shallow numerical reasoning tasks shown in DROP dataset Dua et al. [2019], which usually serves as
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a benchmark for evaluating numerical machine reading comprehension (Num-MRC) performance.
Compared with MWP solving, Num-MRC’s main focus is laid on extracting answer spans from a
paragraph, which are more fault-tolerant with no needs to predict number tokens. Besides, their
solution generation tasks only contain simple computations like addition/subtraction and there are
only integers in DROP. More exactly, several research efforts have been made to deal with this
kind of math-related reading comprehension task by synthesizing new training examples Geva et al.
[2020], incorporating special modules considering the numerical operation Andor et al. [2019] and
designing specific tokenization strategies Zhang et al. [2020c]. Since MWP solving requires further
consideration of the complex composition of reasoning logic in MWP text, the symbolic placeholder
is more effective in MWP solving. Thus, instead of dealing with explicit number values, our work
focuses on improving representation for symbolic placeholders by injecting numerical properties in a
probabilistic way.

Implementation Details

We pre-train our model on 4 NVIDIA TESLA V100 graphic cards and fine-tune on 1 card. The
model was pre-trained for 50 epochs (2 days) and fine-tuned for 80 epochs (1 day) with a batch size
of 32. Adam optimizer Kingma and Ba [2014] is applied with an initial learning rate of 5e-5, which
would be halved every 30 epochs. A dropout rate of 0.5 is set during training to prevent over-fitting.
During testing, we use a 5-beam search to get reasonable solutions. The hyper-parameters setting of
our BERT and RoBERTa is 12 layers of depth, 12 heads of attention and 768 dimensions of hidden
features. Our code and data have been open-sourced on Github 3.

Ape-clean Dataset

Ape210k is a recently released large MWPs dataset Zhao et al. [2020], including 210,488 problems.
The problems in Ape210k are more diverse and difficult than those in Math23k. Not only the stronger
requirement of common-sense knowledge for getting solutions but also the missing of ground-truth
solution equations or answers, will take extra obstacles for MWP solving. Among all these cases,
the problems without answers can not be used in fully-supervised setting. Besides, the problems
without annotated equations but only answer values can be used in the weakly-supervised learning
setting. Therefore, we follow the rules below to select the usable problems from Ape210k to construct
an Ape-clean dataset, which can be used for the fully-supervised learning setting. (i). We remove
all MWPs that have no answer values nor equations. (ii). We remove all MWPs that only have
answer values without equations. (iii). We remove all MWPs with a problem length m > 100 or an
answer equation length n > 20, as they will bring obstacles for training. (iv). We remove all MWPs
requiring external constants except 1 and π. (v). We remove all duplicated problems with the MWPs
in Math23k because almost all problems in Math23k can be found in Ape-210k. After data filtering,
the Ape-clean dataset contains 81,225 MWPs, including 79,388 training problems and 1,837 testing
problems. The remaining 129,263 problems in Ape210k are regarded as Ape-unsolvable, which can
be used in the pre-training tasks in the settings of self-supervised and weakly-supervised learning.

3https://github.com/LZhenwen/MWP-BERT
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