
Solving Math Word Problems with
Process-based and Outcome-based Feedback

Jonathan Uesato∗ Nate Kushman* Ramana Kumar* Francis Song†

Noah Siegel Lisa Wang Antonia Creswell Geoffery Irving Irina Higgins

DeepMind

Abstract

Recent work has shown that prompting language models to generate reasoning
steps improves performance on many reasoning tasks. When moving beyond
prompting, this raises the question of how we should supervise the finetuning
of such models: outcome-based approaches which supervise the final result, or
process-based approaches which supervise the reasoning process itself? Differences
between these approaches might naturally be expected not just in final-answer errors
but also in reasoning errors, which can be difficult to detect and are problematic
in many real-world domains such as education. We run the first comprehensive
comparison between process- and outcome-based approaches trained on a natural
language task, GSM8K. We find that pure outcome-based supervision produces
similar final-answer error rates with less label supervision. However, for correct
reasoning steps we find it necessary to use process-based supervision or supervision
from learned reward models that emulate process-based feedback. In total, we
improve the previous best results from 16.8% → 12.7% final-answer error and
from 14.0% → 3.4% reasoning error among final-answer-correct solutions.

1 Introduction

Recent work has shown that asking language models to use step-by-step reasoning improves perfor-
mance on reasoning tasks (Shwartz et al., 2020; Nakano et al., 2021; Cobbe et al., 2021; Wei et al.,
2022; Kojima et al., 2022; Lewkowycz et al., 2022). While these works have primarily focused on
prompting language models, prior work suggests that finetuning should outperform prompting alone
(Stiennon et al., 2020; Perez et al., 2021; Ouyang et al., 2022). This raises the question of how best
to supervise such models. Two natural approaches are outcome-based approaches, which supervise
the final result, and process-based approaches, which supervise each step of the reasoning process,
including the last step outputting the final result.

In this work, we conduct the first comprehensive comparison between process- and outcome-based
approaches trained on a natural language task. For this, we use the recently proposed GSM8K dataset
(Cobbe et al., 2021) of math word problems. In all cases, we generate a sequence of reasoning
steps leading to the final answer, but vary whether or not supervision is provided only on the
final answers (outcome-based) or on individual reasoning steps (process-based). For process-based
approaches we consider supervision provided by both offline human-generated reasoning traces from
the GSM8K dataset itself, as well as online human correctness annotations, which we collect for
each step of model-generated samples. We compare these approaches in the context of a number of

∗Equal contribution. Correspondence to nkushman@deepmind.com.
†Work performed at DeepMind, now at OpenAI.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Workshop on MATH-AI.

GSM8K
Problems and
Full Answers

Base
Language Model

Reranking
with Reward Model

Majority Voting
Decoding

Supervised
Finetuned Model

Few-Shot
Prompting

RL Model from
Expert Iteration

Solution Samples

GSM8K
Problems and
Final Answers

Reward Model

Filtered Samples
(Fig. 2)

Trace ErrorHuman
Data Annotation

Final Answer Error

Input Dataset

Trained Model

Prompting

Generated Samples

Decoding Strategy

Human Annotation

Output Metric

Figure 1: Method Overview. This schematic provides an overview of the various modeling and
training components considered and how they fit together. Some details (covered in the text) are
ommitted for readability.

different modeling and training components, including: few-shot prompting, supervised fine-tuning,
reinforcement learning (RL) via expert iteration, and reward modeling for both reranking and RL.

Throughout, we consider two primary metrics: trace error rate, which measures how often the model
makes any mistake in its reasoning trace according to human annotators, and final-answer error
rate, which only considers the model’s final answer and ignores the reasoning trace. By “reasoning
trace” we refer to all steps of reasoning, including the last step which in GSM8K is the final numeric
answer. While process-based approaches may provide multiple benefits, including encouraging
human understanding of the problem domain, here we concentrate on investigating their effect on
the trace error rate. We do so because trace error rate is directly measurable and of interest in many
settings. For example, in educational settings, an answer without an (understandable) explanation
may often confuse more than it explains. Recent findings suggest that outcome-based approaches
often lack in this area. For example, work on natural-language-based reasoning (Zelikman et al.,
2022; Creswell et al., 2022) suggests that models optimized exclusively for final-answer correctness
can often produce the correct final answer, even when their generated reasoning traces are incorrect.

2 Methods

Our goal is to train a system for the sequence-to-sequence task (Sutskever et al., 2014) of taking the
text of a problem as input and generating the text of an answer as output. For math word problems,
the answer is a full reasoning trace: a newline-separated sequence of steps, where the last step
is expected to provide the final answer. For GSM8K, the final answer is always an integer. Our
approach broadly follows prior work on RL for language models (LMs) (Ziegler et al., 2019; Nakano
et al., 2021; Menick et al., 2022). We use an LM as a policy, which maps the problem statement
and steps-so-far to a next step. In the RL formalism, this treats each step as an action, and the
observation is provided by all the tokens so far. The policy can be obtained through any of few-shot
prompting, supervised finetuning (Section 2), or RL (Section 2). We also train LMs as reward models
(Section 2), which score proposed full or partial completions from the policy, and can be used both
for reranking samples from the policy, or as the source of rewards during reinforcement learning. All
of our models are based on a 70 billion parameter pre-trained LM. (Hoffmann et al., 2022) In the
following subsections, we describe how we train and assemble these components. See Fig. 1 for an
overview and the appendix for additional details, discussion of the dataset, evaluation metrics and
human data annotation procedures.

Supervised finetuning In supervised finetuning (SFT), we finetune an LM to maximize the log-
likelihood of a sequence of target tokens, given a sequence of input tokens.

Reward models We evaluate two main approaches to training reward models (RMs) (Christiano
et al., 2017; Ziegler et al., 2019; Menick et al., 2022), also known as verifiers (Cobbe et al., 2021). In
both approaches, we implement the RM as an LM, trained to predict a binary label as either a ‘correct’
or ‘incorrect’ token after each step. In the outcome-supervised RM (ORM), the binary label for
each step indicates whether the resulting final answer of that full sample matched the reference final
answer, as proposed by Cobbe et al. (2021). For the process-supervised RM (PRM), the binary label

2

Error rate (%)
Approach Base model Trace Final-answer

Few-shot (Wang et al., 2022; Wei et al., 2022) PaLM-540B 14.0 25.6
Few-shot (Lewkowycz et al., 2022) Minerva-540B - 21.5
Few-shot+Final-Answer RL (Zelikman, 2022) GPT-J-6B - 89.3
Few-shot, ORM reranking (Li et al., 2022) Codex-175B - 16.8
Zero-shot (Kojima et al., 2022) InstructGPT-175B - 59.3
SFT, ORM reranking (Cobbe et al., 2021) GPT-175B - 45.0

N
o

R
M

Few-shot Our Base-70B - 41.5
Few-shot+Final-Answer RL Our Base-70B 19.8 (7.9-31.7) 23.5
SFT+Final-Answer RL Our Base-70B 12.1 (4.6-19.6) 20.2
SFT Our Base-70B 11.4 (4.8-18.0) 22.3

R
M

R
er

an
k

Few-shot, ORM reranking Our Base-70B - 27.8
Few-shot+Final-Answer RL, ORM reranking Our Base-70B 12.4 (2.1-22.8) 16.6
SFT+Final-Answer RL, ORM reranking Our Base-70B 3.7 (0.5-6.9) 14.2
SFT, ORM reranking Our Base-70B 4.4 (0.6-8.3) 14.8
SFT, PRM reranking Our Base-70B 3.5 (0.5-6.5) 14.1

R
M

-R
L

{ Few-shot+ORM-RL, ORM reranking Our Base-70B 5.5 (2.6-8.4) 13.8
SFT+ORM-RL, ORM reranking Our Base-70B 3.4 (0.0-6.8) 12.7
SFT+PRM-RL, PRM reranking Our Base-70B 3.8 (0.5-7.1) 12.9

Table 1: Results overview. We show trace and final-answer error rates. Trace error rates are averaged
across raters. In parentheses, we provide a min-max range, depending on whether errors require both
raters to agree (min) or just a single rater (max). While there is significant noise in the trace error
rates, we can still observe general trends. Within each group, we list approaches in order from most
outcome-based (top) to most process-based (bottom), other than the few-shot model, which we do
not classify as there is no finetuning procedure to supervise.

after each step indicates whether the steps so far are correct. Because we lack reliable programmatic
means for determining the correctness of intermediate steps, we use human annotations for these
labels, as described in Appendix C.

For test-time decoding, we first sample K = 96 full solutions from the policy, and then select the
best sample, either by ensembling or with an RM. When no RM is available, we use majority voting
(Wang et al., 2022). For this, we first select the most common final answer from the K samples, then
select a random sample from among those yielding this selected final answer. Otherwise, we use
RM-weighted decoding, also called verifier-voting by Li et al. (2022). Here, we weight each sample
according to the RM-estimated correctness probability, select the final answer with the largest total
weight, and then select the sample with the highest RM score from those yielding the selected final
answer.

RL via Expert Iteration All our RL experiments use expert iteration (Silver et al., 2017; Anthony
et al., 2017) which alternates between (1) policy improvement, i.e. sampling from the current model
and filtering these samples, and (2) distillation, training a new model using these filtered samples.
The initial base policy can be either the SFT policy, or a 5-shot prompted version of our base LM.

We consider three versions of the policy improvement procedure. In the Final-answer RL approach,
also called Self-taught Reasoner and proposed by Zelikman et al. (2022), we generate K full traces
per problem and filter by final-answer correctness. In the ORM-RL/PRM-RL approaches we instead
select the sample with the highest score according to the ORM/PRM model.

3 Results

Our results are summarized in Table 1. The ORM-RL and PRM-RL models achieve a final-answer
error rate below 13%, improving on the 16.8% final-answer error for the current state-of-the-art
model (Li et al., 2022). This is despite the fact that Li et al. (2022) use a base model which is better
suited to math (Codex-175B), reporting 23.3% few-shot final-answer error, compared to 41.5% for

3

our few-shot base model. Our final-answer error rate is further reduced to 2.7% when the model is
allowed to abstain on only 30% of questions. The ORM-RL and PRM-RL trace error rates, of 3.4%
and 3.8% respectively, significantly improve on the 14% reported by the best prior work (Wang et al.,
2022; Wei et al., 2022). Beyond these quantitative results, we highlight four key takeaways:

Supervising final-answer correctness alone suffices for low final-answer error rate. The SFT
and Few-shot+Final-Answer RL models attain similar final-answer error rates both without an RM
(22.3% vs. 23.5%) and with an ORM (14.8% vs. 16.6%). This is notable, as Few-shot+Final-Answer
RL only requires supervision of the final answers, rather than the full reasoning traces.

ORM-supervised reward models approximate PRM labels. Despite the fact that ORMs are only
trained to predict whether the final answer is correct, we find that ORM predictions tend to agree
more with the PRM labels than with the ORM labels themselves (85% vs. 77% averaged over all
steps). We suspect this is because it is simpler for the ORM to learn to recognize when steps are
correct, than it is to check the answer by internally computing the final answer itself, however this
effect may be specific to our domain.

Low trace error requires either process-based feedback or a reward model that emulates it.
Table 1 shows that despite similar final-answer error rates, there is a significantly higher trace error
rate for the outcome-based Few-shot+Final-Answer RL with ORM reranking vs. the process-based
SFT with ORM/PRM reranking model (12.4% vs. 4.4%/3.5%). However, we find that when we train
the few-shot RL model using an ORM (Few-shot+ORM-RL) rather than training directly against
final-answer correctness, the trace error drops significantly from 12.4% to 5.5%, closing much of
this gap. We believe this results from the previous finding, i.e. that the ORM is basically learning to
emulate the PRM allowing the model to learn from emulated process-based feedback and resulting in
relatively low trace error rates.

4 Related work

Math word problems have been a popular domain for studying reasoning in LMs (Kushman et al.,
2014; Ling et al., 2017; Amini et al., 2019; Miao et al., 2020; Hendrycks et al., 2021; Cobbe et al.,
2021; Ouyang et al., 2022; Kojima et al., 2022; Li et al., 2022; Brown et al., 2020; Chen et al., 2021).
Several papers have demonstrated that few-shot prompting alone can lead to impressive performance
on GSM8K (Chowdhery et al., 2022; Lewkowycz et al., 2022; Wei et al., 2022; Wang et al., 2022).

We focus on finetuning because we are interested in the effects of different feedback procedures, and
because it significantly outperforms prompting alone for our base LM. The original GSM8K paper
(Cobbe et al., 2021) demonstrated significant improvements from reward models or verifiers, and we
use their ORM approach. Li et al. (2022) also study RMs and propose a heuristic-based step-aware
RM, which slightly degrades performance on GSM8K, but boosts performance on a wide range of
other benchmarks. We find that human evaluations of each step provide an improvement. We also use
STaR (Zelikman et al., 2022) (referred to as Few-shot+Final-Answer RL throughout this paper), and
show its GSM8K final-answer error can be reduced from their reported 89% to 23.5% through the
use of a better base model (Hoffmann et al., 2022) and further reduced to 13.8% by using RM-based
RL instead of their final answer RL procedure. In contrast to the above prior work, we not only
show improved performance, but also provide a comprehensive comparison across different types of
feedback, with a focus on trace error rate in addition to final-answer error rate.

Moving beyond math problems, much work studies multistep reasoning for LMs focusing either
exclusively on outcome-based or process-based approaches (Lewkowycz et al., 2022; Ouyang et al.,
2022; Perez et al., 2020; Shwartz et al., 2020; Wei et al., 2022; Kojima et al., 2022; Wu et al., 2021;
Creswell et al., 2022; Nye et al., 2021; Zelikman et al., 2022). While most prior work on head-to-head
comparisons of process- and outcome-based approaches has been on algorithmic tasks such as sorting
numbers, which avoid working with human data (Graves et al., 2014; Reed and De Freitas, 2015; Li
et al., 2016; Cai et al., 2017; Christiano et al., 2018). In contrast, we directly compare outcome-based
and process-based techniques on a natural language task, and include a detailed analysis of trace error
rates. WebGPT (Nakano et al., 2021) is the closest work to ours, however, we more comprehensively
explore both process- and outcome-based supervision, additionally evaluating process-supervised
RMs, the PRM-RL approach, and purely outcome-supervised RL policies (without SFT).

4

References
A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maximum a

posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

A. Amini, S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi. Mathqa: To-
wards interpretable math word problem solving with operation-based formalisms. arXiv preprint
arXiv:1905.13319, 2019.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete problems in ai
safety. arXiv preprint arXiv:1606.06565, 2016.

T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and tree search.
Advances in Neural Information Processing Systems, 30, 2017.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

J. Cai, R. Shin, and D. Song. Making neural programming architectures generalize via recursion.
arXiv preprint arXiv:1704.06611, 2017.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet,
F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and
W. Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

P. Christiano, B. Shlegeris, and D. Amodei. Supervising strong learners by amplifying weak experts.
arXiv preprint arXiv:1810.08575, 2018.

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learning
from human preferences. Advances in neural information processing systems, 30, 2017.

K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

A. Cotra. Without specific countermeasures, the easiest path to transformative ai likely leads to
ai takeover, 2022. URL https://www.alignmentforum.org/posts/pRkFkzwKZ2zfa3R6H/
without-specific-countermeasures-the-easiest-path-to.

A. Creswell, M. Shanahan, and I. Higgins. Selection-inference: Exploiting large language models for
interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

B. Dalvi, P. A. Jansen, O. Tafjord, Z. Xie, H. Smith, L. Pipatanangkura, and P. Clark. Explaining
answers with entailment trees. ArXiv, abs/2104.08661, 2021.

M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser. Universal transformers. arXiv
preprint arXiv:1807.03819, 2018.

D. Dohan, W. Xu, A. Lewkowycz, J. Austin, D. Bieber, R. G. Lopes, Y. Wu, H. Michalewski, R. A.
Saurous, J. Sohl-dickstein, et al. Language model cascades. arXiv preprint arXiv:2207.10342,
2022.

R. El-Yaniv et al. On the foundations of noise-free selective classification. Journal of Machine
Learning Research, 11(5), 2010.

5

https://arxiv.org/abs/2107.03374
https://www.alignmentforum.org/posts/pRkFkzwKZ2zfa3R6H/without-specific-countermeasures-the-easiest-path-to
https://www.alignmentforum.org/posts/pRkFkzwKZ2zfa3R6H/without-specific-countermeasures-the-easiest-path-to

T. Everitt, V. Krakovna, L. Orseau, M. Hutter, and S. Legg. Reinforcement learning with a corrupted
reward channel. arXiv preprint arXiv:1705.08417, 2017.

Y. Geifman and R. El-Yaniv. Selective classification for deep neural networks. Advances in neural
information processing systems, 30, 2017.

M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Berant. Did Aristotle Use a Laptop?
A Question Answering Benchmark with Implicit Reasoning Strategies. Transactions of the
Association for Computational Linguistics (TACL), 2021.

O. Goldman, V. Latcinnik, U. Naveh, A. Globerson, and J. Berant. Weakly-supervised semantic
parsing with abstract examples. arXiv preprint arXiv:1711.05240, 2017.

N. Gontier, K. Sinha, S. Reddy, and C. Pal. Measuring systematic generalization in neural proof
generation with transformers. Advances in Neural Information Processing Systems, 33:22231–
22242, 2020.

A. Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racanière, T. Weber, D. Raposo, A. Santoro, L. Orseau,
T. Eccles, et al. An investigation of model-free planning. In International Conference on Machine
Learning, pages 2464–2473. PMLR, 2019.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A.
Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. v. d. Driessche, B. Damoc,
A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre. Training
compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

G. Irving, P. Christiano, and D. Amodei. Ai safety via debate. arXiv preprint arXiv:1805.00899,
2018.

Z. Kenton, T. Everitt, L. Weidinger, I. Gabriel, V. Mikulik, and G. Irving. Alignment of language
agents. arXiv preprint arXiv:2103.14659, 2021.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. arXiv preprint arXiv:2205.11916, 2022.

V. Krakovna, J. Uesato, V. Mikulik, M. Rahtz, T. Everitt, R. Kumar, Z. Ken-
ton, J. Leike, and S. Legg. Specification gaming: the flip side of ai in-
genuity, 2020. URL https://deepmindsafetyresearch.medium.com/
specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4.

R. Kumar, J. Uesato, R. Ngo, T. Everitt, V. Krakovna, and S. Legg. REALab: An embedded
perspective on tampering. arXiv preprint arXiv:2011.08820, 2020.

S. Kumar and W. Byrne. Minimum bayes-risk decoding for statistical machine translation. Technical
report, JOHNS HOPKINS UNIV BALTIMORE MD CENTER FOR LANGUAGE AND SPEECH
PROCESSING (CLSP), 2004.

N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay. Learning to automatically solve algebra
word problems. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 271–281, 2014.

A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone, C. Anil,
I. Schlag, T. Gutman-Solo, Y. Wu, B. Neyshabur, G. Gur-Ari, and V. Misra. Solving quantitative
reasoning problems with language models, 2022. URL https://arxiv.org/abs/2206.14858.

6

https://deepmindsafetyresearch.medium.com/specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4
https://deepmindsafetyresearch.medium.com/specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4
https://arxiv.org/abs/2206.14858

C. Li, D. Tarlow, A. L. Gaunt, M. Brockschmidt, and N. Kushman. Neural program lattices. 2016.

Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen. On the advance of making language
models better reasoners. arXiv preprint arXiv:2206.02336, 2022.

W. Ling, D. Yogatama, C. Dyer, and P. Blunsom. Program induction by rationale generation: Learning
to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146, 2017.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M. Chadwick, M. Glaese, S. Young,
L. Campbell-Gillingham, G. Irving, et al. Teaching language models to support answers with
verified quotes. arXiv preprint arXiv:2203.11147, 2022.

S.-y. Miao, C.-C. Liang, and K.-Y. Su. A diverse corpus for evaluating and developing english
math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, 2020.

A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson,
O. Pathak, A. Nazi, et al. A graph placement methodology for fast chip design. Nature, 594(7862):
207–212, 2021.

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders,
et al. Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint
arXiv:2112.09332, 2021.

M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, et al. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint arXiv:2112.00114, 2021.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with human
feedback, 2022. URL https://arxiv.org/abs/2203.02155.

E. Perez, P. Lewis, W.-t. Yih, K. Cho, and D. Kiela. Unsupervised question decomposition for
question answering. arXiv preprint arXiv:2002.09758, 2020.

E. Perez, D. Kiela, and K. Cho. True few-shot learning with language models. Advances in Neural
Information Processing Systems, 34:11054–11070, 2021.

S. Polu and I. Sutskever. Generative language modeling for automated theorem proving, 2020. URL
https://arxiv.org/abs/2009.03393.

M. Rauh, J. Mellor, J. Uesato, P.-S. Huang, J. Welbl, L. Weidinger, S. Dathathri, A. Glaese, G. Irving,
I. Gabriel, et al. Characteristics of harmful text: Towards rigorous benchmarking of language
models. arXiv preprint arXiv:2206.08325, 2022.

S. Reed and N. De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279, 2015.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

V. Shwartz, P. West, R. L. Bras, C. Bhagavatula, and Y. Choi. Unsupervised commonsense question
answering with self-talk. arXiv preprint arXiv:2004.05483, 2020.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature, 550(7676):
354–359, 2017.

N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano. Learning to summarize with human feedback. Advances in Neural Information
Processing Systems, 33:3008–3021, 2020.

7

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2009.03393

A. Stuhlmüller and J. Byun. Supervise process, not outcomes. 2022. URL https://ought.org/
updates/2022-04-06-process.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. Advances
in neural information processing systems, 27, 2014.

O. Tafjord, B. D. Mishra, and P. Clark. Proofwriter: Generating implications, proofs, and abductive
statements over natural language. arXiv preprint arXiv:2012.13048, 2020.

J. Uesato, R. Kumar, V. Krakovna, T. Everitt, R. Ngo, and S. Legg. Avoiding tampering incentives in
deep RL via decoupled approval. arXiv preprint arXiv:2011.08827, 2020.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, and D. Zhou. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought prompting
elicits reasoning in large language models, 2022.

J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe, J. Leike, and P. Christiano. Recursively
summarizing books with human feedback. arXiv preprint arXiv:2109.10862, 2021.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning. Hotpotqa:
A dataset for diverse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600,
2018.

E. Zelikman, Y. Wu, and N. D. Goodman. Star: Bootstrapping reasoning with reasoning. arXiv
preprint arXiv:2203.14465, 2022.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.
Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

8

https://ought.org/updates/2022-04-06-process
https://ought.org/updates/2022-04-06-process

A Dataset and evaluation metrics

We conduct all experiments on the GSM8K dataset (Cobbe et al., 2021), composed of grade school
math word problems. We chose GSM8K because it is a competitive benchmark, and contains natural
language reasoning traces. We focus on a single dataset, since the need to recruit human annotators
with the domain expertise to accurately evaluate reasoning traces imposes a large up-front cost. We
split out our own validation set of 256 examples from the original training set, which leaves us with
7118 training and 1319 test examples.

We report two main metrics for all methods evaluated on the GSM8K test set. Final-answer error rate
is the fraction of problems for which the method does not produce the correct final answer. Because
all final answers on GSM8K are integers, this can be measured with exact string matching. Trace
error rate is the fraction of problems with correct final answers for which the method produces at
least one incorrect reasoning step. We estimate this via human annotations of the correctness of each
reasoning step, which is detailed in Appendix C.

We report final-answer and trace errors as two separate metrics because we are particularly interested
in errors which remain undetected after checking easily verifiable metrics (in this case, final-answer
errors). For example in an educational setting it is important to show a student the correct steps to get
the answer, and we can easily filter out incorrect traces that lead to the wrong answer, but it is much
more difficult to filter out incorrect traces that lead to the correct answer.

B Training Details

B.1 SFT

We finetune using AdamW (Loshchilov and Hutter, 2017) with a learning rate of 2 × 10−6 and a
batch size of 256. We stop finetuning once the language modeling loss begins to increase on the
validation set. For our SFT model, this happens after 70 steps, amounting to slightly more than 2
training set epochs.

B.2 Reward Models

Unless otherwise noted, for all approaches which include an ORM, we train the ORM using samples
from the policy for that approach, taking K = 96 samples with temperature 1.0,

We follow Cobbe et al. (2021) and regularize with dropout, with a dropout parameter of 0.1, and
otherwise reuse the hyperparameters used for SFT from Section 2. To speed up learning in the
SFT-based approaches, we initialize the ORM training using the SFT model parameters, while for the
few-shot based approaches we initialize from the base pretrained LM. For the PRM, we annotate 3
samples per problem from the SFT policy, restricting to problems where the SFT majority prediction
(see ??) was incorrect, in order to make the most of our human annotation budget. Due to the small
size of our human-annotated dataset (1560 full solutions), we initialize the PRM parameters to the
ORM parameters and lower the learning rate to 1× 10−7. The RM loss curves have some fluctuation,
and so we select the RM with the best validation loss before 2000 steps.

B.3 Decoding

We sample with temperature T = 1.0, and use the syntax from Cobbe et al. (2021) to allow the
model to decide when to use a calculator. In early experiments, we also tried RM reranking after each
generated step (rather than the full solution), but found that this led to slightly worse performance,
increasing final-answer error by 1-2%.

Formally, in RM-weighted decoding we select the final answer f∗ =
argmaxf

∑
yi:final_ans(yi)=f rm_prob(yi), where y1, . . . , yK are the model samples, then se-

lect the best sample according to y∗ = argmaxy:final_ans(y)=f∗ rm_prob(yi). This works slightly
better compared to simply selecting the sample with the highest RM score (improving final-answer
error rate about 1% with the SFT model, and slightly more with the RL models). However, we note
that both majority voting and RM-weighted decoding are slightly less general due to their reliance on
exact string-matching between final answers.

9

B.4 RL via Expert Iteration

We note that, aside from the 5 random training examples used for the prompt, none of the few-shot-
based approaches ever use the intermediate reasoning steps provided in the GSM8K dataset, our
human annotations, or any models derived from this data. When initializing from the SFT model, we
follow Polu and Sutskever (2020) and reuse expert samples from each iteration, so that our training
set grows each epoch. We do not do this with few-shot approaches because in that setting, the
samples from the early epochs have many trace errors which we do not want the RL model to imitate.
Correspondingly, there are several minor implementation differences between the two cases, which
we note below

Policy Improvement For the few-shot version, we select all traces yielding the correct final answer,
while for the SFT-based version, we only use one randomly chosen sample per problem. In the
ORM-RL approach, we generate K full traces per problem, and select the sample with the highest
score according to the ORM model. In the PRM-RL approach, we instead treat each step as an
individual episode. At each step, we generate K candidate steps, select the candidate with the highest
PRM score, and continue from the selected step until the model outputs a step with the final answer
indicator text, or a maximum of 15 steps. We set K = 96 across all experiments. For few-shot-based
approaches, we retrain the RM after every expert iteration. For SFT-based approaches, we skip this
step and use a fixed RM, since somewhat surprisingly, this did not make a significant difference in
preliminary experiments.

Distillation For distillation, we use the same hyperparameters as SFT. As with SFT, we apply early
stopping by validation loss, where our validation set is constructed from expert policy samples on the
validation set. For SFT-based approaches, we initialize with the SFT parameters at each distillation
step, while for few-shot-based approaches, we initialize with the base model parameters.

C Data annotation

As discussed in Section 2, the PRM is trained on stepwise labels indicating whether the steps so
far are correct. To collect this data, we present human annotators with the problem statement, the
reference solution from GSM8K, and the generated model solution, and ask them to indicate the first
model step with a major mistake, if any exist. Our instructions define a major mistake as “a step
where the information expressed is incorrect, or it would no longer be possible to reach the correct
solution without undoing that step”. From these annotations, we can label every step with a binary
label indicating whether the steps so far are correct: all steps before the first major mistake are labeled
‘correct’, while the remainder are labeled ‘incorrect’.

We applied a small amount of dataset cleaning by removing samples from annotators with low
inter-annotator agreement (measured on the 20% of solutions where we used duplicate labelling),
as well as those from GSM8K problems flagged by annotators as ambiguous. This removed about
20% of our data, leaving annotations for 1560 model samples across 530 training set problems,
corresponding to 9856 step-level binary labels. For the validation set, we used the same procedure,
but added duplicate labelling and a manual pass by the paper authors to resolve inter-annotator
disagreements. Our validation set contained 162 model samples, with 913 total steps. For evaluation,
we used 200 problems with correct final answers per model. This was done for each of the 10 models
in Table 1, again with duplicate labelling.

Participants and pay The full details of our study design, including compensation rates, were
reviewed and approved by our independent ethical review committee. All participants provided
informed consent prior to completing tasks and were reimbursed for their time. It is our policy that
researchers must pay workers/participants at least the living wage for their location.

Training dataset problems For constructing the PRM training dataset, we used samples from the
SFT model. Due to a limited annotation budget, we only annotate problems where the SFT majority
voting prediction is incorrect, since this focuses training on difficult problems, and still includes a
mix of correct and incorrect samples due to annotating 3 model solutions per problem.

10

Quality assurance Since evaluating the accuracy of solutions to mathematical problems is a special
skill, we ran a preliminary qualification study before using annotations from participants for training
or evaluation. For the qualification annotation tasks, we selected model solutions where three authors
unanimously agreed on the first major mistake, and required participants to annotate at least 3 out of
4 such solutions correctly. In total, 21 / 91 candidates were included in our annotator pool.

Additionally, we used duplicate annotations for 20% of the training problems. We removed ratings
from annotators who had an inter-annotator agreement rate below 75% on doubly-rated problems. On
manual inspection, we found that these annotators had typically made errors in this disagreeing cases.
This removed data from 4 / 21 annotators, amounting to 21% of our originally labelled training data,
leaving us with 530 annotated problems (compared to 675 originally).

After quality assurance steps, using the same set of duplicated problems, we measure inter-rater
agreement rate of 92% and Cohen’s κ of .915 for the task of predicting the first incorrect step. Note
that this estimate will be slightly biased upwards as we filtered raters based on this same set, but as
the inter-rater agreement rate is fairly bimodal across raters, this effect should be relatively small.

For the evaluation, we gather duplicate annotations for all ratings, and see an inter-rater agreement
of 87%, with Cohen’s κ of .34 on the binary task of labelling the full trace as correct. Inter-rater
agreement is significantly lower than on the training set. We attribute this to the fact that for evaluation
we only annotate traces with the correct final answer, and observe that when the final answer is
correct, mistakes in the reasoning can be quite subtle, while when the final answer is incorrect the
reasoning mistakes are often more clear cut.

11

	Introduction
	Methods
	Results
	Related work
	Dataset and evaluation metrics
	Training Details
	SFT
	Reward Models
	Decoding
	RL via Expert Iteration

	Data annotation

