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Abstract

Recent advances in program synthesis have shown success with methods that
employ supervised learning on synthetic data generated from domain specific
languages (DSLs). In this work, we propose an algorithm for program synthesis
that extends these methods. It uses transfer learning from pre-trained language
models, and uses a policy improvement operator based on policy-guided search.
This hybrid approach combats the challenges of searching a large language space
with sparse rewards. We show its effectiveness on the task of integer sequence
generation, a special case of programming-by-examples with fixed inputs. Our
results demonstrate that the inclusion of our policy improvement operator leads to
a 32% increase in performance compared to a supervised baseline method.

1 Introduction

Program synthesis refers to a class of techniques that generate programs given a specification of
semantic and syntactic requirements. In programming-by-examples, this specification is a set of
input-output examples [[14}[15]. In this work, we consider a specific setting: program synthesis for
integer sequence generation. The goal is to find a program that outputs a given integer sequence,
e.g. {4,9,16,...,100}. This task is a form of symbolic regression, as our programs contain a
representation of the general formula for computing the nth term of a sequence. This task may also
be seen as list processing on a fixed input.

Programs can be constructed as a sequence of operations in a programming language. Searching for
programs that produce a desired output then requires solving the combinatorial optimization problem
of finding the right order of operations, which poses multiple challenges. First, the space of possible
programs is large, and we encounter combinatorial explosion as program length and language size
increase. Second, it is difficult to obtain a signal that indicates whether the search is moving in the
right direction as it is rare to find a program that produces the correct output on execution.

Our method employs three techniques to overcome these challenges, the combination of which results
in a powerful program synthesis algorithm: 1) transfer learning from pre-trained language models,
2) synthetic data generation from a DSL, and 3) use of a policy improvement operator that iterates
between policy-guided search and training. This method achieves a 32% increase in performance
on the task of integer sequence generation compared to the supervised baseline method. We expect
that this method will generalize to other program synthesis tasks and combinatorial optimization
problems in future work.
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Figure 1: Overview of our method. In the finetuning stage, the pre-trained language model Qg is
trained to predict programs in an autoregressive manner using synthetic programs and sequences
sampled from the DSL. The finetuned model represents a task-conditional policy network. In the
search stage, new programs p are found for the task x, and added to the program buffer along with
the sequences generated on program execution, . In the training stage, @y is trained further on
programs and sequences sampled from the program buffer.

2 Method

We describe our method in Algorithm([T] and visualize it schematically in Figure[T} The inputs are 1) a
language model acting as a policy Qy, 2) our DSL, 3) the target integer sequences, and 4) a prioritized
program buffer. The policy network is initialized based on a pre-trained language model. We first
finetune the pretrained policy network on synthetic programs and sequences, randomly generated
from the DSL, using transfer learning. We then iterate through a two-stage process: the search stage
finds new programs p (guided by the policy (Qg), and policy training improves the policy (based on
programs found in search). By alternating these two stages over nj, = 20 meta-iterations, we expect
that over time, the search stage will find more useful programs, and the policy will become better at
guiding the search. We describe these steps in more detail below.

Algorithm 1 program_synthesis

Require: Pre-trained model: QQy, DSL: L, target integer sequences: X, program buffer initialised
with an empty set of program and program output pairs: b = {}

Ensure: Finetuned policy network: @), updated program buffer: b = {p;, Z;}j
k<0

{pi, T} < sample_and_execute(L) > Sample programs and execute for sequences
Q4 + train(Qg, {Ti, pi}ix,) > Finetune policy network on synthetic data
while £ < 20 do
b < search(X,Q4,b) > Search for programs that generate sequences
Q4 + train(Qy,b) > Finetune policy network on programs found in search
k+—k+1
end while

Transfer learning with pre-trained language models The pre-trained language model that we use
as input for our algorithm is the CodeTrans model for program synthesis [[10]. This is a transformer
based on T5-small [31]], trained on unsupervised datasets in various programming languages (code
only) and fine-tuned on list processing program synthesis tasks from the AlgoLISP dataset [27] (code
and text prompt). The encoder takes a textual prompt as input, representing a partial specification of
a program, and outputs an embedded representation. The decoder takes this as input and outputs code
in a LISP-inspired DSL.



Program: lambda[#0](map(lambda[#1]( =( /( =(#1 8) 9) #1)) #0)
Python: lambda x: map(lambda y: round(y=*8 / 9) =* y, x)
Output: 1,4,9,16,20,30,42,56,72,90,110,132,156,168,...

Table 1: Example synthetic program, its Python equivalent, and program output.

Model transfer is possible as the CodeTrans model and our policy network take inputs that represent
a partial program specification; In the CodeTrans model, this is a text prompt and, in our case, this is
the integer sequence that the program should generate. There are also similarities between our DSL
and the languages that the CodeTrans decoder is trained on. Thus, we expect the decoder to have
already learnt about ‘how to code’ given a partial specification represented by the encoder embedding.

Synthetic data generation from Domain Specific Language We create a Domain Specific Lan-
guage (DSL). A program in our DSL is defined in the same way as the LISP-inspired DSL of
Polosukhin et al. [27] and their AlgoLISP dataset. Each program is a set of arguments (with ar-
guments defined by name and type) and a program tree. Each node in the tree has a symbol type:
constant, argument, function call, function, or lambda. Our DSL differs from that of Polosukhin et
al. [27] in some primitive constants and functions. Our primitive constants are the integers 0-9. Our
primitive functions are: +, -, ¥, /, %, **, sqrt, min, max, reduce, filter, map, ==, |, ||, &, <, >.

We construct synthetic programs in an iterative manner. Starting from a partial program containing the
lambda term, we sample a valid next term from the DSL uniformly at random. Validity is described
by the type system of the DSL. We append the new term to the partial program, and repeat this
procedure until we reach the end of the program, or we reach a pre-defined maximum program length.
Once the maximum program length is reached, we only allow primitives to be added.

We add three constraints to ensure that the generated programs are realistic and varied. First, we reject
programs if their output sequence contains numbers larger than 10°°. Second, if the output sequence
contains the same number for more than 90% of the total length, we reject it with 50% probability.
Third, we only accept a program if the integer sequence it produces is unique. An example program
in our DSL is given in Table[T]

Policy improvement: search Each meta-iteration of policy improvement consists of a search
stage and a training stage. First, for every target sequence in our test set, we search for programs
that output the sequence. This procedure can be best thought of as a tree-search, where each node
corresponds to a partial state of a program. The policy network guides this tree-search by outputting
a distribution over tokens, given the embedding of the target integer sequence and the partial program.
For consistency with related work [6], we only give the policy network access to the first 25 numbers
of the sequence. We use beam search, as this results in more diverse programs than greedy search.
We maintain 10 beams and sequentially add the most likely next token to our beams, keeping only
the 10 most likely sequences.

We add programs found during search to the buffer only if they output a sequence of integers with
a length longer than 2. Additionally, when searching for a program that outputs a target integer
sequence x;, we may instead find a program that outputs another sequence x; that does belong to our
set of target integer sequences X . Following related work [13]], we therefore implement a version of
hindsight replay [[1]. For any found program p;, the output &, is compared to all the target integer
sequences. If numbers 26 to 35 are equal, the sequences are considered equivalent, and the program
is added to the program buffer with an indicator that it solves task x;.

Policy improvement: training In the training stage, we draw training examples from the program
buffer. To encourage sampling of useful programs, we assign priorities based on heuristics. The
priority is the percentage of the next ten sequence terms correctly generated by executing the program,
multiplied by a time decay of 0.5%, where ¢ is the number of meta-iterations since the entry was added.
This decay incentives more recent programs to be sampled more often.

For each program in our buffer, we assign the priority as the maximum priority of corresponding
entries (as the same program may be added as a solution for multiple sequences during search). We
draw 10,000 programs from the normalised probabilities defined by our maximum priorities. Our
policy network is trained for 200 epochs on these programs and then it is passed back to search.
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Figure 2: Percentage of correct integer sequences for each method and meta-iteration.

3 Experiments

We sample 10,000 synthetic program and integer sequence pairs from the DSL, 9,000 for training
and 1,000 for validation. The On-line Encyclopedia of Integer Sequences (OEIS) [16] contains
~ 350, 000 integer sequences. We filter the dataset by keyword ‘easy’ (= 80, 000) and take the first
10,000 sequence with length greater than 35 as our test set. Integer sequences are tokenized before
being passed as input to the language model. We tokenize each integer seperately, and add a symbol
in between integers that acts as delimiter and represents the sign of an integer. Integers larger than
10 are tokenized with ‘NaN’.

We first finetuned the CodeTrans model on our synthetic data by training for 300 epochs with batch
size 10, Adam optimizer [18] and learning rate 10~4, taking 20 hours on one NVIDIA GeForce GTX
1080 Ti GPU. For model selection, we greedily decode the embeddings of the validation sequences,
and our validation metric is the percentage of correct terms 26 to 35 of the sequences generated on
execution of the decoded programs.

As baseline, in ablation 1, we omit the program buffer and instead train on 10,000 new unconstrained
program samples from our DSL at each meta-iteration. This is a small-scale proxy for the work of
D’ Ascoli et al. [6]. We perform three further ablations: 2) omitting the priority from the program
buffer and instead sampling under a uniform distribution 3) randomly initialising the CodeTrans
model before finetuning on synthetic data 4) omitting hindsight replay. Sequences are ‘solved’ if a
found program outputs terms 26 to 35 correctly given the first 25 terms, following D’ Ascoli et al. [6].

Figure [2 shows that our method outperforms the baseline (ablation 1) by 32%, from 8.7% solved
to 11.5% solved after 20 meta-iterations, demonstrating the power of policy improvement. The
inclusion of prioritized sampling from the buffer results in an 11% increase in performance, from
10.4% solved to 11.5% solved after 20 meta-iterations, over uniform sampling from the program
buffer. Further, transfer learning using the pre-trained CodeTrans model offers some improvement
compared to ablation 3 with random initialization. Omitting hindsight replay in ablation 4 results in a
46% decrease in performance, from 11.5% solved to 5.3% solved after 20 meta-iterations.

These preliminary results highlight the benefit of using our method with transfer learning and
policy improvement over supervised learning with synthetic data alone. Further work will look at
implementing this method on a larger scale to make direct comparisons to the findings of D’ Ascoli et
al. [6] and Gauthier et al. [[13]]. D’Ascoli et al. train on 5 million synthetic examples whereas we
have finetuned on on 200,000 training examples in total after 20 meta-iterations. Further, Gauthier et
al. implement their method on the entire OEIS set, whereas we use the ‘easy’ subset of around 3% of
the size consistent with D’ Ascoli et al. As a result, future work will look at implementing our method
with a larger test set, finetuning on more sequences and training for longer.



4 Related Work

The combination of search and learning is a powerful tool that has been used in many contexts, ranging
from theorem proving [20, 28} 129, 30] to game-playing [34]] to general combinatorial optimization
[19, 21]] and maths problems [35]. In these settings, we generally observe large search spaces and
sparse rewards. The feedback loop between search and learning provides a solution to overcome
these challenges.

In the context of program synthesis and program optimization, supervised learning of large (policy)
models has often been employed as well [2} (5,18} [17} 22} 241 |25} 33]]. A common approach is to define
a DSL, then use the resulting search-space to build programs [4} (7], 126, 27, 23] 136, [11]]. We follow a
similar approach in this work.

In program synthesis for list processing tasks, DeepCoder [3] trains a network to predict properties
of the desired program in order to augment search. Further work includes DreamCoder [9]], which
introduces policy improvement via iteration of search, training and abstraction phases. The addition
of the abstraction phase aggregates similar parts of programs into repeatable modules, allowing
reduced program length, although it requires domain knowledge of the used language. Moreover,
in program synthesis for matrix multiplication, AlphaTensor [11] applies policy improvement by
translating the problem to a single player game and iteratively training the policy on played games
and synthetic demonstrations.

For the specific problem of integer sequence program synthesis, D’ Ascoli et al. [6] demonstrate that
training a policy on synthetic data alone followed by beam search is effective. Specifically, they
find programs that, given the first 25 terms in a sequence, generate terms 26 to 35 correctly for 21%
of sequences. We extend this work with our policy improvement operator, which prevents domain
mismatch resulting from training on synthetic data [32]]. Direct comparisons are challenging because
D’ Ascoli et al. have access to significantly more resources (training for 250 epochs on 16 GPUs), but
our small scale baseline acts as a proxy for their results.

Recent work that also considers policy improvement for integer sequences is the work of Gauthier et
al. [12L[13]]. This work uses tree-based neural networks to parse programs, and updates the network
in meta-iterations. In their first meta-iteration, Gauthier et al. solve less than 0.1% of the tasks with
random search, highlighting the bootstrapping challenge associated with finding correct programs.
Where they start search and training from scratch, which arguably makes the method more flexible,
we show that a language model trained on different programming languages can be used to initialise
search and training in the first meta-iteration. Additionally, the choice to represent programs as trees
is intuitive, but may be limiting as it requires more domain knowledge than parsing programs as text
directly.

5 Conclusion

In this work, we propose an algorithm for program synthesis based on three core techniques: transfer
learning with pre-trained language models, supervised learning on synthetic data and policy improve-
ment via iterating policy-guided search and training. These three techniques are known to scale well
with data and compute. Further, they are applicable in many settings. Here, we apply them to the
integer sequence generation problem, where the goal is to synthesize a program that generates a
target integer sequence. By using a language model pre-trained for program synthesis tasks, and
finetuning on synthetic programs, we overcome the challenging bootstrapping stage as our search
does not start from scratch. Our approach uses a policy improvement operator by alternating search
and training, and we show that this outperforms a supervised learning baseline by 32%. Future work
will look at implementing this method on a larger scale while targeting more program synthesis and
combinatorial optimization tasks.
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