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Abstract

Out-of-distribution generalization (OODG) is a longstanding challenge for neural
networks, and is quite apparent in tasks with well-defined variables and rules,
where explicit use of the rules can solve problems independently of the particular
values of the variables. Large transformer-based language models have pushed
the boundaries on how well neural networks can generalize to novel inputs, but
their complexity obfuscates how they achieve such robustness. As a step toward
understanding how transformer-based systems generalize, we explore the question
of OODG in smaller scale transformers. Using a reasoning task based on the puzzle
Sudoku, we show that OODG can occur on complex problems if the training set
includes examples sampled from the whole distribution of simpler component
tasks.

Large transformer-based ‘foundation’ models [1] have attracted recent attention by showing some
success in mathematical reasoning tasks, demonstrating a degree of systematicity and compositionality
[2, 3, 4]. However, it is unclear how their ability to behave systematically emerges, due to the massive
sizes of the training data and model parameters. Are they demonstrating the ability to generalize
out-of-distribution to novel problems? Or are they succeeding because the data they are trained on
samples from the entire space of possible training examples?

To investigate how a domain-agnostic model may learn to generalize to out-of-distribution examples,
we train a transformer-based network to learn a simple solution strategy to the popular puzzle
game Sudoku. We use a 6x6 Sudoku grid rather than the traditional 9x9, which provides sufficient
complexity for investigating algorithmic reasoning while offering more tractability and lower compute
requirements. The general rule of Sudoku still applies: every n-celled row, column, and outlined
region of the grid must contain exactly one instance of each of the n alternative digits.

Sudoku is well-suited for this inquiry for several reasons. First, it is governed by a small set of
rules that are inherently abstract, relational, and form sophisticated interactions and dependencies
that require careful algorithmic and deductive reasoning. These rules form group properties and
symmetries [5, 6] that translate one puzzle to another such that learning to solve a subset of examples
of a class of puzzles would enable the solver to solve all puzzles with the same relational properties,
provided the abstract rules and relations are correctly induced. This enables an elegant means to
probe for systematicity by designing training and test sets that share core relational features yet differ
superficially in a well-defined manner. Second, Sudoku has been shown to be challenging to neural
networks, and has only been successfully solved using a graph network architecture [7] with built-in
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domain-specific inductive biases enforcing the relevant, task-specific, symmetries [8]. While this is a
useful strategy for building models that solve Sudoku, it offers little towards understanding how a
domain-agnostic neural network can learn the underlying rules in a way that would enable systematic
generalization. Finally, Sudoku has been used to study reasoning, learning, and generalization in
humans [9, 10], offering an interesting benchmark for what forms of behavior one ought to expect
from a solver with human-level general intelligence.

We focus on one solution strategy in Sudoku called the Hidden Single technique and introduce a
transformer neural network architecture and training set to explore out-of-distribution generalization
(OODG). Building on this network, we present the following findings: First, a single forward pass
in the network is insufficient to learn the Hidden Single strategy; sequential, multi-step reasoning
is necessary. Second, we decompose the Hidden Single strategy into two subtasks, and show that
including training examples on these subtasks sampled from the full space of instances of such
problems allows the model to exhibit substantial OODG.

1 Task Description

We design base our tasks on the three simplest Sudoku techniques. Full House (FH) involves
identifying a cell in which all other cells in one of its houses (row, column, or 2x3 box) are filled such
that the empty cell’s digit must be the only remaining digit. Naked Single (NS) involves identifying a
cell in which 5 of the 6 possible digits already exist in its neighborhood (row, column, and 2x3 box)
such that the empty cell’s digit must be the remaining digit. Hidden Single (HS) involves identifying
a cell C in which all other cells ci in one of its houses cannot contain one of the digits, either due to
ci already containing a different digit or the digit being present in ci’s neighborhood, such that the
only remaining cell that can contain the digit in the house is C.

For each technique, we create a task in which the model is presented with a 6x6 Sudoku grid and a
string sequence prompt that provides the context for solving the problem, including the coordinates
of the cell to solve for, the candidate digit, the name of the technique to use, and, for the Hidden
Single (HS) and Full House (FH) tasks, the house type to inspect. By specifying all these details as
part of the prompt, we simplify the task from conducting a search for a valid solution to verifying
whether a goal cell should contain a candidate digit according to the rules of the specified technique.

The target sequence formats for each of the three tasks were designed to support composition of
elements of the Full House and Naked Singles (NS) tasks (see Table 1). The HS task format steps
through all of the cells other than the target cell in the specified target house, and checks to see if
the specified digit can go in any of these cells. If it cannot, the answer is yes, it must go in the target
cell.The FH task performs a similar iteration strategy, but identifies whether the cell contains a digit
at all at each step. The NS task matched the sub-tasks in the HS task, requiring the model to identify
whether a given cell can contain a candidate digit based on any direct contradictions within its shared
row, column, or box neighborhood.

Table 1: Sample problems. Note that rows count top to bottom and columns count left to right.

Hidden Single Full House Naked Single

Prompt

<SOS>hidden_single
goal_cell row 6 column 2
house_type column
digit 3
can_contain

<SOS>full_house
goal_cell row 2 column 2
house_type box
digit 4
is_filled

<SOS>digit 6
can_contain
row 4 column 3

Target

row 1 column 2 no
row 2 column 2 no
row 3 column 2 no
row 4 column 2 no
row 5 column 2 no
solution yes <EOS>

row 1 column 1 no
row 1 column 2 yes
row 1 column 3 no
row 2 column 1 yes
row 2 column 3 yes
solution no <EOS>

no <EOS>
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Figure 1: Out-of-distribution accuracy results. Small dots represent individual models (10 per
condition). Large dots represent average accuracy in each condition. Left: accuracy based on final
yes/no at the end of output sequence. Right: accuracy based on the entire output sequence.

2 Experiments
We use a 3-layer transformer encoder [11] to which all grid and text embeddings are passed, and
from which output vectors are then mapped to output text tokens. We use teacher-forcing during
training and greedy autoregressive generation during evaluation.

We first check if the network could solve the tasks by producing the final yes/no responses immediately
after the prompt. After training on 50,000 HS puzzles uniformly sampled from the full problem space,
we find that these models only solve 87.8% of held-out puzzles, compared to the 99.9% of models
trained to produce the full sequence of reasoning steps. Taking complete success at within-distribution
generalization as a pre-requisite, we use the full sequences as exemplified in Table 1 in all remaining
experiments, which focus on out of distribution generalization in our models.

Out-of-distribution generalization. We define within-distribution (WD) puzzles as those that
conform to the restrictions used to construct the training set and out-of-distribution (OOD) as puzzles
that do not conform to these restrictions. All models included in our analyses solved held-out
WD puzzles with near perfect accuracy, so we only report OODG performance in our results for
conciseness.

Based on the natural symmetries of Sudoku grids and the train/test split used in [10], we devised
three distributional splitting schemes to probe for OODG. Our first condition, Rows, recognizes
that the application of the HS, FH, or NS techniques is isometric relative to the row in question.
Thus, a successful model of abstract relational reasoning should solve HS puzzles applied to any
of the 6 rows, even when trained on a strict subset of the 6 rows. We train the models using HS
puzzles applied to 4 of the 6 rows (i.e. the goal cell will only appear on these 4 rows), then test its
OOD performance on the remaining 2 rows. In our second condition, Columns, we exclude all HS
puzzles that are performed over columns from the training set, and test the models on these column
puzzles. The abstract principle of process of elimination remains the same, and the main challenge is
knowing which cells to iterate over. Our final condition, Digits, uses the fact that swapping digits
only superficially changes the puzzle without affecting the underlying structure (see Figure 2. We
train the model on puzzles with 4 of the 6 digits as the candidate digits and test the model on puzzles
with the remaining 2.

We also had 3 conditions for how we trained the models. In the first training condition, HS Only,
we included 110,000 HS puzzles as part of the training set and not the FH or NS puzzles, and
trained the model for 70,000 gradient updates (each based on 192 examples). The second condition,
Simultaneous, included 50,000 HS puzzles and 30,000 FH and NS puzzles each, and the model was
trained on all 3 tasks simultaneously for 70,000 updates. The FH and NS puzzles were sampled
completely at random without any systematic constraints. The last condition, Curriculum, uses the
same materials as Simultaneous, but trains the model on the FH and NS puzzles for the first 20,000
updates, reaching ceiling performance, before training on all 3 tasks for 50,000 more updates.
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Figure 1 summarizes the out-of-distribution generalization results in each condition. First, we
compute the accuracy based on the final yes/no answer at the end of the output sequence, and we find
that models trained only on HS puzzles struggle to exceed chance (50%), suggesting that the model
has no inherent inductive bias towards generalizing in these dimensions. When trained with the FH
and NS tasks, the model succeeds in generalizing to the held-out rows and columns to a high degree,
especially when trained using the curriculum-based setup. We consider the strong generalization
in the Columns condition (though somewhat less complete than in the Rows condition) to be an
important finding, since the Columns condition contained no training on column-wise puzzles, while
the Rows condition included 4 of the 6 rows. Our models generally failed to exceed chance on the
held-out digit puzzles. The relational neural network [8] also fails to transfer to held-out digits, but
humans who learn to solve HS puzzles with a restricted set of targets show no decrement when tested
on held-out digits [10].

We also measure the accuracy for entire sequences, in which a problem is considered solved if the
entire model output sequence matches the target sequence, including the intermediate steps. This not
only magnifies the differences, but also indicates that the models that generalize successfully do so in
its entire reasoning process, not just at the correct final output.

Figure 2: Attentional maps. Within-
and out-of-distribution puzzle with
candidate digits 3 and 4 on top and
bottom, respectively

Although the Rows and Columns conditions successfully
demonstrate out-of-distribution generalization, the Digits con-
dition does not, as shown by the roughly 50% accuracy in
Figure 1. This is surprising, since human participants show no
change in performance when the digits in the grid are swapped
[10]. Its peculiarity is magnified by the fact unlike the Rows and
Columns conditions, full sequence accuracy is well above the
floor even when the models are trained with only HS puzzles.

Digit generalization error analysis. Inspecting the model
generated outputs, we find that the models correctly identify
the relevant cells to iterate over, and the last line indicating the
final answer is consistent with its intermediary outputs. In other
words, the errors are made when determining whether or not
the cells can contain the candidate digit. Moreover, these errors
only occur at empty cells, not at cells already containing a digit.

To gain further insight, we analyze the attention maps generated
by the transformer that indicate which information the model
considers. We probe the model by taking held-out puzzles and
rotating the digits in each grid such that 1 becomes 2, 2 becomes
3, 6 becomes 1, etc., thus producing 6 identical sets of puzzles
that only differ by the digits involved, and each puzzle in the
set has a unique candidate digit. We inspect how the model
queries the grid as it produces the yes/no responses at the end
of each substep in the HS problem by taking the maximum
attention weight given for each cell from the last transformer
layer. Figure 2 shows an example of one model’s attentional
map on the HS problem shown in Table 1 when considering
whether the candidate digit can be placed at the cell on (2, 2).
In the within-distribution problem, where 3 is the candidate
digit, the model attends to and correctly identifies the 3 in the
same row. In contrast, the model does not attend to the same position in the out-of-distribution puzzle
where 4 is the candidate digit. This form of mis-attention is characteristic of the errors in the Digits
condition.

The model apparently fails to transfer its success in the NS task to correctly perform the NS task when
it is embedded within the HS task. We trace the source of this difficulty to a superficial difference
between the NS and HS tasks. Unlike the FH task which is aligned token-for-token with the HS task,
the NS task requires much fewer steps and has a shorter prompt compared to the HS and FH tasks.
We test this hypothesis by padding the NS prompt with 10 null tokens so that the position of the
“digit” token is aligned with the position in the HS and FH prompts, and by adding 4 extra “row r
column c yes/no” lines in the target sequence with random coordinates to match the format of the
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other two tasks. Training the models on all 3 tasks simultaneously on this Padded dataset allows
them to reach near perfect generalization in the Digits condition. Interestingly, we find that adding
the 4 extra lines but not the null-token padding does not help the model generalize at all, leaving the
OODG accuracy near 50%. This suggests that the knowledge transfer from the NS to the HS tasks
may be impeded by the model’s over-reliance on the token position encoding used in transformers.

3 Discussion

We find, using carefully designed datasets utilizing isomorphic symmetries in Sudoku, that
transformer-based models can generalize well to out-of-distribution puzzles in the Rows and Columns
conditions when component subtasks span the full space of the data distribution, and fail to do so
without this training on the component subtasks. These findings may be relevant to understanding
the performance of large transformer-based models. While they may receive restricted experience
with complex multi-step problems, their ability to solve new ones may depend in part on more
complete coverage of component sub-problems in their training data. Future research should explore
this hypothesis in larger and more naturalistic data sets. We did find that the models struggled to
generalize to held-out digits, and found evidence that this failure is due to a failure to attend to
within-distribution digits during crucial steps within the Hidden Single task. This is surprising in
that the failure occurs during steps the model does succeed on in the component Naked Single task,
and this is likely due to over-reliance on token position encoding. Future research that corrects this
deficiency could have important implications for the success of larger models, perhaps helping them
to achieve stronger performance in abstract reasoning than they have achieved thus far.
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4 Supplementary Materials

4.1 Training Details

The core of our model is a 3-layer transformer encoder [11] supported by embedding layers for grid
digits, grid cell positions, and input text, and finally an output text decoder layer. The digits of the
grid are encoded using a 256-dim embedding layer. The row and column coordinates are encoded by
a 128-dim embedding layer and the resulting vectors are concatenated as a single 256-dim vector.
The digit and coordinate vectors are summed to form a single 256-dim grid cell embedding. All text
tokens are encoded by a 256-dim embedding layer and position information is added to the vectors
using the sinusoidal positional encoding scheme introduced in [11]. The 36 grid cell vectors and all
token vectors are passed to the transformer, which is composed of 3 encoder layers with 8 heads and
1024-dim feed-forward layers, and the output vectors are decoded using a linear layer to form the
final logit values for the predicted output tokens.

During training, we use teacher-forcing to predict the next token at each sequence position and
cross-entropy with the target sequence. We mask the loss so that in the loss is only applied after the
’digit’ token in the hidden single and full house tasks, and after the column number token in the naked
single tasks. The loss is computed using cross-entropy and the model is optimized using Adam [12]
with a learning rate of 0.0001. When training with multiple tasks at once, we sum the losses in each
batch from all the tasks before computing the gradient for backpropagation. We keep the same batch
size of 192 samples for each task, regardless of how many tasks are used to train at once.

Although we provide the model with seed sequences as exemplified in Table 1 including the candidate
digit at evaluation time, we train the model to also predict the candidate digit to evaluate whether
how accurately could identify the correct digit with the prompt alone. During evaluation time, all
output sequences are produced using greedy autoregressive generation.

4.2 Attention Map

To obtain the attention map as shown in Figure 2, we evaluated the model on the Hidden Single
problem shown in Table 1. We generated 5 additional problems based on the problem in Table 1 by
shifting the digit 1 to 5 times such that what was originally a 1 would be a 2 in the second problem,
then a 3, and so on, yielding 6 puzzles that are identical in every way except the individual digits
involved. For example, the top figure in Figure 2 shows the problem as is shown in Table 1, whereas
the bottom figure shows the same puzzle with all digits incremented by 1, wrapping around 6 back to
1. In the bottom puzzle, the prompt would state “digit 4” to account for the increment.

After evaluating the model, we take the attentional weights from the final transformer layer where
the input token was the second “2” from the line stating “row 2 column 2”, since the output of
this position would be a “yes” or a “no”. To visualize the attention across all 8 heads, we take the
maximum attention weight so that if a single head attended highly to the position, it would appear in
the figure. Figure 2 only shows attention to the 36 cells in the grid for visualization purposes, though
the model could and does attend to other tokens in the prompt and output sequence.
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