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Abstract

Large language models have recently shown promising progress in mathematical
reasoning when fine-tuned with human-generated sequences walking through a
sequence of solution steps. However, the solution sequences are not formally
structured and the resulting model-generated sequences may not reflect the kind of
systematic reasoning we might expect an expert human to produce. In this paper,
we study how to build stronger reasoning capability in language models using the
idea of relational abstractions. We introduce new types of sequences that more ex-
plicitly provide an abstract characterization of the transitions through intermediate
solution steps to the goal state. We find that models that are supplied with such
sequences as prompts can solve tasks with a significantly higher accuracy, and
models that are trained to produce such sequences solve problems better than those
that are trained with previously used human-generated sequences and other base-
lines. Our work thus takes several steps toward elucidating and improving how
language models perform on tasks requiring multi-step mathematical reasoning.

1 Introduction

Recent findings in models of algorithmic reasoning suggest that neural networks, like humans,
benefit from learning to solve mathematics through a chain of reasoning steps rather than attempting
to produce the final output as a direct mapping from the problem prompt [8, 7,3} 2]. However, while
various papers have explored how multi-step reasoning outperforms direct mapping, they often in-
troduce and conduct analyses using new datasets each with different methods for how the individual
steps are defined. This raises the question if and how the various formats of the reasoning steps affect
learning differently. Unfortunately, this problem is difficult to address directly by simply comparing
the performances between the datasets since they each contain questions of varying difficulty,
potentially confounding the results. Moreover, some datasets use natural language [2, [3] which
introduces further variance depending on the vocabulary and sentence structure, some avoid natural
language altogether [9, |5], and some begin with natural language inputs but translate them into
purely arithmetic operations while solving [10} [I]. Thus, to understand how the solution structure
impacts model learning, a common set of problems with varied solution approaches are needed.

In this work, we address this question and challenge by focusing on a natural language-based task,
which requires integrating mathematical reasoning with world knowledge and coping with the am-
biguity of natural language, and a synthetic task that captures what we see as some of the central
features of the mathematical reasoning. At their core, both tasks involve reasoning about how dif-
ferent entities relate to each other, and formulating appropriate arithmetic equations to perform the
corresponding numerical computations. Thus, in both tasks, we can decompose each step of the
solution into abstract relational reasoning and arithmetic expressions, which can then be used to
recompose the solution sequence in different forms. We find that models, when prompted with the
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Math Question: Janet's ducks lay 16 eggs per day. She eats 3 for breakfast every morning and bakes muffins for her friends every day with 4. She sells the
remainder at the farmers' market daily for $2 per fresh duck egg. How much does she make every day?

16-3-4=9; 9*2=18 <relation> eggs laid per day - eggs eggs laid per day - eggs for <relation> eggs laid per day - eggs
for breakfast - eggs for baking = breakfast - eggs for baking = for breakfast - eggs for baking =
remaining eggs; remaining eggs; 16-3-4=9; remaining eqgs;
remaining eggs * price per egg = remaining eggs * price per eqg = remaining eggs * price per egg =
amount earned daily from eggs amount earned daily from eqgs; amount earned daily from eggs
<equation> 16-3-4=9; 9*2=18 9*2=18 OR

<equation> 16-3-4=9; 9*2=18

Unit Conversion Task: H=2A; F=3D; B=3A; 1 =3F; E=3B; J=2I; B=3C; F=4E; 6 =3C; 1 =4H; D = 2C; G = 1B;
Convert J to G (mod 5)

T8 =02-020 3 E=A - A N3N =13 03 Rl = <relation> J -> I; | -> F; F->D; D -> J>E1%*2=21->F2*3=1; <relation> J -> I; 1 -> F; F->D; D ->
[l /75 = 2] C; C->G; <equation>1*2=2;2*3 F->D;1*3=3;D->C;3"2=1; C; C->6;
=11*3=33*2=101/3=2; C->6; 1/3=2 OR
<equation>1*2=2;2*3=1;1"3
=33%2=11/3=2

Figure 1: How can we incorporate structured relational reasoning in sequence-to-sequence modeling? We
outline several ways to combine relational and numeric part of the reasoning process.

correct relational abstraction, can solve problems at a substantially higher accuracy, suggesting that
relational abstraction is the more challenging component to single out in the problem solving pro-
cess. Models that are trained with explicit relational abstractions also perform better than those that
are not, which makes explicit relational abstraction a useful task for pre-training or fine-tuning.

2 Incorporating Relational Abstraction

Problem solving can be thought of taking a series of intermediate steps to reach the goal, each of
which consists of a numerical expression and an abstract description of the transition between one
abstract item to another. Instead of directly converting plans to graph symbols, we explore the use
of structured natural language as a middle ground between symbolic language and unstructured
natural language.

To this end, we follow a sequence-to-sequence paradigm as it can be easily adapted to a Transformer
model. Figure[T|enumerates a few possibilities for how we can incorporate structured relational rea-
soning into sequence-to-sequence modeling. Assume that we can decompose a solution sequence
into the numeric and relational part. Using numeric-only formulates the solution by incorporating
only numbers and arithmetic operations, which serves as our baseline. In relational-first, the re-
lational statements are indicated before numeric ones. This represents the strategy of generating
a high-level relational plan first, and then implementing the plan by computing the relevant num-
bers. Alternatively, the interleaved format goes through the relational and numeric steps one after
another, alternating between the abstract planning and arithmetic steps. Lastly, in the multitask ap-
proach, the model is prompted to either output the relational or the numeric components, but not
both, which may allow the model to learn to be implicitly aware of the high level abstraction while
writing down the numeric equations. This approach tests the claim that additional auxiliary lan-
guage tokens effectively function as regularizers or learning tools that can be discarded at test time
and may even suppress performance if included [6, 4, [3]. Moreover, learning and generating the
two sequences separately has the added advantage of generating shorter sequences at test time, just
like numeric-only. In this paper, we examine which type of relational abstraction brings the best
reasoning capability.

3 Experiments

3.1 Task 1: Solving Grade School Math Problems

We first evaluate our framework on more realistic problems posed in natural language as provided
by the Grade School Math 8K (GSM-8K) dataset [2], which contains around 7.7K training question
and 1.3K test questions with human annotated solutions, all in the form of the English language. An
example of the problem and its solution can be found in the first two rows of Table[I] The original
dataset contains the following possible solution formats:

* The original solution format provides solution steps and is what was used for the results reported

in the original paper. It is based entirely on natural language.

* The equation-only format contains the numerical equations without any use of natural language
to reference any objects or units.



Problem Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Original solution (1) Janet sells 16 - 3 - 4 = <16-3-4=9>> 9 duck eggs a day.
(2) She makes 9 * 2 = <9*2=18>>18 every day at the farmer’s market.
Equation only (1) €16-3-4=9>>

(2) €9*2=18>
Auxiliary (optional)

Socratic (1) How many eggs does Janet sell?
(2) How much does Janet make at the farmers’ market?

Relation (1) eggs laid per day - eggs for breakfast - eggs for baking = remaining eggs

(2) remaining eggs * price per egg = amount earned daily from eggs

Table 1: GSM math dataset sample problem and example solution components

Method GPT2-M GPT2-XL Method Accuracy
Baseline without sequence generation Numeric Only
Answer only 3.56 493 Numeric Sequences 259 (1.1)
Solution sequences only - N
— - Relational and Numeric
Original Solution 10.69 17.44
Our Equation Only 15.32 22.97 Relational plan then numeric 69.0 (2.0)
Auxiliary and solution sequences: Model generates both Interleaved: units then numbers 83.5(1.5)
Socratic + Soln. (aux-first) 1001 13.95 Interleaved: pumbers then units 69.3 (2.9)
Socratic + Soln. (interleaved) 9.93 17.51 Interleaved: integrated 54.1(3.0)
Socratic + Eqn. (aux-first) 13.27 19.03 Plan + Interleaved: units then numbers ~ 72.5 (2.2)
io?rﬂ_ﬁc + ]éqﬂ ((ime'lﬁe‘fw:d) :;ég %égg Plan + Interleaved: numbers then units ~ 74.4 (1.7)
elation + Eqn. (aux-first, . E .
Relation + Eqn. (interleaved) 13.19 2297 Plan + Interleaved: integrated 77.14.9)
Relation + Eqn. (multitask) 15.62 28.05 Relational (Prompted) and Numeric
Aux111f1ry and solution ‘sequences: Prompt with true auxiliary Relational plan then numeric 84.7 (4.8)
Socratic + Soln. (aux-first) 17.46 26.23 Plan + Interleaved: units then numbers  96.7 (1.2)
gofmff + Soln. (interleaved) 17.89 2889 Plan + Interleaved: numbers then units ~ 95.5 (2.2)
ocratic + Eqn. (aux-first) 20.47 35.56 .
Socratic + Eqn. (interleaved) 27.82 36.92 Plan + Interleaved: integrated 97.6 (1.1)
Relation + Eqn. (aux-first) 54.59 64.59 . R
Relation + Eqn. (interleaved) 58.53 66.26 Table 3: Unit conversion accuracy over 20 runs.
. . Standard errors in parentheses.
Table 2: GSM-8K Finetuning Top-1 Test Solve p
Accuracy (%)

* The socratic version contains a series of questions that ask for intermediate answers, which we can
either prepend before each step of the original solution (socratic + solution), or of the equation-
only format (socratic + equation).

In addition to these formats, we introduce the relation + equation format that features relational
abstractions. Not only are the resulting states indicates, but also the input arguments and the types
of transition functions which we hypothesize provide a better form of supervision. We asked human
participants to annotate the entire GSM-8K dataset so that each solution step would be paired with
an abstract relation.

Results. Table [2| shows the main results. Compared to the answer-only baseline, in which the
intermediate steps are omitted, all of the multi-step approaches offer an improvement. Equation-
only outperforms the original solution format (22.97% vs. 17.44%), which contains both numbers
and text, and this advantage generally holds in other matched comparisons.

We see that the multitask training leads to substantially improved performance in generating the
correct equations in the larger GPT2-XL model (28.05% correct compared to the baseline of 22.97%,
a 22% relative improvement). This finding shows clearly that training to reason relationally can
improve test-time performance, even though at test-time it is only generating numerical sequences.

Relation + equation (interleaved) is achieves better results than equation-only (29.49% vs. 24.79%),
and is almost on par with multitask (29.49% vs. 30.17%) when using 20 samples and the external



Task Prompt Relational Plan Sequence Types
(Optional)
Numeric Only Interleaved

Units Then Numbers | Numbers Then Units Integrated
graph
H—2A F—3D | relations steps steps steps steps
B—3A I—-3F |J=-I1—-F— 1#2—=2 JI1*%2—=2 1#2 =271 1J#%#2 =21
E—3B J—=2I D—+C—G 2%3 1 IF2*3 =1 2*¥3 -5 11IF 21*3—=1F
B—3C F—4E 1#3 -3 FD1*3 -3 1*3—-53FD 1F*3—-3D
G—3C I—4H 3%2—1 DC3*2—1 3¥*2—-51CD 3D*2—1C
D—-2C G—1B 1/3—=2 CG1/3—=2 1/3—2CG 1C/3—=2G
convert 1 Jto G <S>2G</S> | <S>2G </S> <§>2G </S> <S>2G </S>

Table 4: Example of a unit conversion task problem represented in different formats.

verifier. We find that verification is less helpful when the output format is purely numeric, such as
in the multitask and equation only formats.

We also find that when models trained with auxiliary and solution sequences are prompted at test
time with the ground-truth auxiliary sequence for the given problem, model accuracy improves
significantly (see Table[2)). Strikingly, prompting with ground-truth relational sequences triples the
accuracy in the equation-only model (66.26% vs. 22.97%). Moreover, our relational sequences
are far better prompts than the GSM8k socratic questions (66.26% vs. 36.92%), suggesting that
with a good abstract relational plan, language models can solve the math questions much more
easily. These results also indicate that the challenge the models face lies primarily in constructing
the correct relational plan.

3.2 Task 2: Unit Conversion

The unit conversion task involves converting a given quantity and unit, then finding the equivalent
quantity in another unit based on the conversion rules that are provided in the prompt (see Table ).
Problems of this type correspond abstractly to a subset of the problem types encountered in GSM8K.

Following the general paradigm illustrated in Figure[I] the relational-plan approach begins by gen-
erating the sequence of units to traverse before producing the sequence of steps containing nu-
meric calculations. As before, the numeric-only approach contains only the arithmetic in each step,
whereas the interleaved approach includes both the abstract state and the numerical expression in
each statement. Additionally, we consider three sub-types for the interleaved approach: units-then-
numbers states the source and destination units of the traversing edge, followed by the numerical
expression; numbers-then-units states the numerical expression, followed by the source and des-
tination units; integrated states the source quantity and unit, then the remainder of the numerical
expression, followed by the destination unit. We refer the reader to Table [ for examples.

Results. Of the variants in which the model generates both relational and numeric content at test
time, the units-then-numbers model has the highest accuracy. Producing the relational plan first and
numeric-only sequences performs slightly weaker, comparable to our findings in Task 1. The fact
that units-then-numbers is the best of the three interleaved formats when the model does not first
generate a relational plan supports the view that identifying all of the relevant units that need to go
in a numeric computation prior to performing that computation can be very helpful.

Although training the model to produce both a relational plan and relational steps interleaved with
numbers is helpful in numbers-then-units and integrated conditions, the reverse is true in the units-
then-numbers condition, where asking the model to produce an initial relational plan actually re-
duces accuracy from 83% to 72%. This pattern of results suggests that generating the correct initial
relational plan can itself be a challenge, and that an incorrect initial plan then interferes with per-
forming the correct computations. Numeric only is worse here, since the model may struggle to
learn the unit conversion task with numbers-only due to the higher complexity of the task, compared
to the GSMS8K. These features could make the unit conversion task more difficult, requiring more
relational planning.

In Task 1 we find some empirical benefit of the multitask approach, where the model is trained to
output either the relational plan or the numerical expressions, then evaluated on the numerical ex-
pressions at test time. Here, in contrast to the GSMS8K results, we find that only 29.8% of the prob-
lems are correctly solved by multitask, significantly lower than any of the other relational reasoning
models. We hypothesize that while multitask learning with numerical expressions and relational



abstractions separately may be effective on simpler problems, this strategy also does not scale well
with planning complexity.

4 Discussion

We find that relational reasoning is a key component of mathematical reasoning, whether using
natural language or abstract symbols as indicated by our experiments on the GSM8K and the unit
conversion tasks. Training the models with relational abstraction can outperform models trained us-
ing numerical expressions only, and making these abstractions more salient improves performance
further still. We also find that even when all the relational and numerical components are present,
how they are ordered makes a significant difference. Among the variants we considered, performing
the relational reasoning step just before the numerical computation step is most advantageous, out-
performing cases where the full relational plan must be generated at the outset. Lastly, we find that
providing the model with the correct abstract steps produces a massive boost in performance, result-
ing in a 3-fold increase in accuracy for the GSM task and near-ceiling accuracy in unit conversion,
suggesting that the core of the challenge is indeed correct relational planning.
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