
Automatic Generation of Socratic Questions for
Learning to Solve Math Word Problems

Kumar Shridhar ∗♠ Jakub Macina ∗♠Φ Mennatallah El-Assady ♠Φ

Tanmay Sinha ▼ Manu Kapur ▼ Mrinmaya Sachan ♠

♠Department of Computer Science, ETH Zurich
ΦETH AI Center

▼Professorship for Learning Sciences and Higher Education, ETH Zurich

Abstract

Socratic questioning is an educational method that allows students to discover
answers to complex problems by asking them a series of thoughtful questions.
Generation of didactically sound questions is challenging, requiring an understand-
ing of the reasoning process involved in the problem. We hypothesize that such
a questioning strategy can not only enhance human performance but also assist
the math word problem (MWP) solvers. In this work, we explore the ability of
large language models (LMs) in generating sequential questions for guiding math
word problem-solving. We propose various guided question generation schemes
based on input conditioning and reinforcement learning. On both automatic and
human quality evaluations, we find that LMs constrained with desirable question
properties generate superior questions and improve the overall performance of a
math word problem solver.

1 Introduction
Questioning can be a valuable way of supporting student thinking. It can be conceived as a scaffold
Wood et al. [1976], Quintana et al. [2004], where a more knowledgeable tutor helps a student in
solving problems otherwise too difficult. The role of a teacher using questioning is to interject
questions that focus on the most critical points in an explanation and take the understanding forward
Anghileri [2006]. Even though question generation (QG) models have been studied for factual
SQuAD-like questions [Rajpurkar et al., 2016, Puri et al., 2020], these models fail to generate
sequentially-coherent questions [Reddy et al., 2019, Choi et al., 2018]. Furthermore, domain-specific
questioning is challenging as the QG model needs to understand the reasoning process required to
provide fine-grained responses.

In this work, we explore the use of large language models [Raffel et al., 2019, Radford et al., 2019] to
generate guiding sub-questions for math word problems. We define important components of Socratic
questioning strategy and demonstrate the effectiveness of inducing the defined questioning properties
in large LMs. In particular, we use reinforcement learning (RL) with rewards from various sources
including Math question answering (Math QA) models and various forms of input conditioning for
generating these questions.

We train and evaluate our models on the recently released GSM8K MathQA dataset Cobbe et al.
[2021] of multi-step reasoning MWPs. We illustrate the benefit of our RL-based generation strategy
using both automatic and human evaluation metrics. Our evaluation shows that our guided approach
makes the generation model ask more logically relevant and structurally correct questions, which
follow the appropriate sequencing of questioning at the right granularity level. We further show that

∗ Equal contribution; correspondence at: {shkumar, macinaj}@ethz.ch

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Workshop on Math-AI.

Question
Generator+

MWP

generated
sub-questions

 (q1
*,..., qn

*)
P : {Context, C: Janet’s ducks lay 16 eggs per day. She
eats three for breakfast every morning and ….. ,
Question, Q: How much in dollars does she make every
day?}

q1: How many eggs does Janet sell?, s1:<<16-3-4=9>>9
q2: How much does Janet make? , s2:<<9*2=18>>18
A: 18

Content
Planner

P⊕[s1, s2]

s*
1

 : (- -), s*
2 : (*)

P

q*1: How many eggs Janet are left with Janet to sell?
q*2: What is the total amount that Janet make?

Seq2SeqSeq2Seq

Fluency

Granularity

Answerability
Rans

Rg

Rfl

Reward Module

Focused Relevant

Reward, R = Rfl + Rg + Rans

Figure 1: Our overall methodology: Two Socratic properties of focused (red dotted box) and
relevant (green dotted box) question generation are added to the question generation model. ⊕
represents the concatenation operation.

our generated questions, when provided as additional context, can aid a math question answering
model and make making intermediate reasoning steps explicit, thereby providing further empirical
justification of the value of questioning for math QA model training.

2 Methodology

Inspired by the prior learning sciences work in scaffolding Wood [1994], Anghileri [2006], we
hypothesize the most important components of a Socratic questioning strategy as:

(A) Focused: An essential property of a good questioning strategy is to ask questions that are
directed toward the most critical domain-specific content. Irrelevant questions not only make
the process difficult but also force a diversion in the focus and may increase the cognitive
load that a student experiences.

(B) Relevant: Asking the right sequence of relevant questions that can assist students in
reaching the final goal (solving the main question in case of math word problems) is a
further important part of good questioning.

We discuss our approach to modeling Socratic questioning using large LMs. We begin by defining
our data. We define an MWP dataset D as a collection of MWPs. Each MWP P in the dataset are
accompanied by its solution S and the numerical answer A. We do not always assume the existence
of problem solutions S and answers A as will also automatically derive them from various MathQA
models. Each MWP P = (C,Q) consists of the story context C and the question Q. The problem
solution S consists of n solution steps S = (s1, ..., sn). We define Socratic questioning such that
each solution steps si can be mapped to a sub-question qi . We refer to q as a collection of all Socratic
questions q1, ..., qn for a given MWP P in our work. An example MWP is present in Figure 1.

Our main module is the Question Generator (QG) module, which is a transformer Vaswani et al.
[2017] based encoder-decoder model. The QG model takes the reference Math word problem P and
generates the Socratic questions q∗ as close to the true sub-questions q as possible. The learning
objective of the QG module is as:

LQG = −
n∑

i=1

log PDec (qi|q:i−1; Enc(P)) (1)

where Enc represents the encoder and Dec represents the decoder for the seq2seq QG model. Note
that the sub-question qi is generated word by word in an auto-regressive manner. Next, we propose to
inject the two Socratic questioning properties into our QG model as follows.

2.1 Focused questions

To learn a sequence of disciplined questions focused on specific reasoning steps in the MWP, it is
important to ask the right set of questions. We propose a content planner ψ that serves as a guiding
principle for the QG model to ask the right focused questions. In principle, the content planner

2

module can extract any relevant information to assist the QG model, but for the task of math word
problems, we restrict it to operators (e.g. multiplication) and equations.2

We use the same seq2seq architecture for the content planner module as our QG model, with the only
difference being that the output comprises a set of equations s∗1, .., s

∗
n or just the operators within the

equations (instead of the sub-questions). The generated operators/equations are appended to the input
MWP P in the encoder for the QG module and the modified focused learning objective LQGf

is:

LQGf
= −

n∑
i=1

log PDec (qi|q:i−1; Enc([P ⊕ plan])) (2)

Here, plan depicts the content planner module’s output and ⊕ depicts the concatenation operation.

2.2 Relevant questions
An essential element of a good questioning strategy is to ask relevant questions that are not only
factually associated with the main problem, but also eventually help in answering the main question.
However, there can be any number of relevant questions that can be asked for an MWP. Thus, our
goal is to optimize the questioning strategy such that it is relevant, efficient, and rewarding at each
step, making sure that the final goal can be achieved with these individual questions. We induce
these properties in our QG model using various rewards that force the model to stay relevant to the
problem.

During training, the QG model samples a set of sub-questions q′, and calculates various rewards
based on q′. The parameters of the QG model are updated using the REINFORCE algorithm Williams
[2004] as:

LRL =− Eq′∼PDec
[R(q,q′, P)] = −R(q,q′, P)

n∑
i=1

logPDec (qi|q:i−1; Enc(P))

The reward function [R(q,q′,P)] measures the individual rewards for fluency, granularity, and
answerability and each individual reward is described in more detail in the Appendix A.2.

2.3 Overall Loss Function
Finally, with the induced Socratic properties in the QG model, the total loss is defined as a combination
of the focused learning loss LQGf

and the rewards loss LRL, as:

L = α LQGf
+ (1− α) LRL (3)

where α is a weighting factor.

3 Empirical Analysis
We study the properties of Socratic questioning on the GSM8K dataset Cobbe et al. [2021]3 that
consists of 8.5K grade school math word problem with 7.5K training problems and 1K test problems.
We used T5 Raffel et al. [2019] as the backbone of both our QG and content planning modules.
For the reward-generating QA model, we used GPT-2 Radford et al. [2019] because of resource
constraints. However, to improve our performance, a better QA model like GPT-3 Brown et al.
[2020] can be used in the future. Both the models are fine-tuned on the GSM8K train set using the
Huggingface library Wolf et al. [2019].

We report automatic evaluation using SacreBLEU Post [2018] which is based on exact word overlap,
BERT F1 score Zhang et al. [2019] which is based on DeBERTa He et al. [2020] as the similarity
model. We also report #Q, the number of questions generated compared to the number of ground
truth reasoning steps (same as Granularity reward), and Math QA Solver accuracy (same as the
overall Answerability reward) to assess if our generated questions helped the QA model reach the
final numerical solution.

2We also do not consider the step-by-step solutions S in our work, as creating step-by-step textual solution
requires a lot of time and effort from teachers and even the largest language models fail to understand MWPs
easily [Wei et al., 2022, Chowdhery et al., 2022].

3https://github.com/openai/grade-school-math

3

Strategy BLEU BERT F1 #Q QA Accuracy
Baseline 13.02 0.566 0.056 2.57
No Planning 51.53 0.783 0.428 6.74

+ fluency 52.21 0.784 0.440 -
+ # of questions 51.86 0.784 0.431 -
+ QA 52.22 0.783 0.417 -
+ all weighted 53.39 0.781 0.431 6.75

Operators 54.98 0.788 0.346 7.50
Equations 58.82 0.813 0.807 8.49

+ fluency 59.52 0.816 0.818 -
+ # of questions 59.75 0.814 0.811 -
+ QA 59.37 0.813 0.799 -
+ all weighted 59.62 0.815 0.815 8.50

Table 1: Results Comparison: QG and QA model performance comparison using different planning
strategies and rewards. All experiments are run for at least 3 times and an average score is reported.

Results in Table 1 demonstrate that planning strategies improve the baseline methods by more than
3% on BLEU score with operators as planning, and by more than 7% with equations. Similar to
BLEU, we achieve better performance on BERT F1 scores too. Finally, the number of correct
question counts improves with planning and doubles compared to the no-planning variant. However,
results show that in all the variants the number of generated sub-questions is less than the number
of reasoning steps. This could be improved further by oversampling during the beam search (beam
search settings are the same for all variants in this experiment).

Using rewards as a strategy to incentivize the model to generate relevant and rewarding questions
improves all the model performance, suggesting the importance of rewards. Moreover, sub-questions
with operators and equations as planning improves the QA performance by 1−2%. Rewards, although
improves the QG quality, have a negligible effect on QA performance. This is mainly because slight
improvement in sub-questions quality does not necessarily help in reaching to the final goal.

Human quality evaluation

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Likert Scale

Repetitive

Factuality

Logical Rel

Right Seq

Granular

Completeness

Fluency

Qu
al

ity
 E

va
lu

at
io

n

Model Comparison
Baseline
Our Model

Figure 2: Comparison of baseline versus our model
generated sub-questions on several metrics from
our human evaluations (showing mean and stan-
dard deviation).

Next, we perform a human evaluation of the
questions generated for 100 randomly selected
test MWPs to assess the quality of our model
generation (our best model) compared to the
baseline (with no planning or reward-based
strategies). For this analysis, we divided the
questions among 4 annotators with an overlap
of 40% of the questions among them to eval-
uate the generated question quality on the fol-
lowing factors. A 5-point Likert scale ranging
from 1 (poor) to 5 (very good) was used for
each dimensions of quality assessment: repeti-
tion - whether questions are repeated, factuality -
whether all questions can be solved by the infor-
mation given in the problem, logical relevance
- if the question is logically related to the MWP,
right sequence - correct sequence of questions leading to the final answer, granularity - questions are
granular enough to solve the problem but are still relevant and no retrieval or basic common sense
questions are asked, completeness - questions are complete with all steps covered to reach to the final
answer, and fluency - grammatical correctness and fluent in the language.

Figure 2 presents our findings, clearly demonstrating that our planning and reward strategies lead to
superior quality questions on the MWP task. Although both baselines and our model-generated text
achieve almost full score (5) on the fluency parameter, our model-generated questions that are more
aligned to the MWP, thus leading to a higher score on all the other parameters. We also present a
randomly selected sample of generated questions in Appendix subsection A.3.

4

4 Conclusion
We study the importance of sub-questioning for learning a mathematical concept and explore how
LMs may generate these sub-questions. We demonstrate the usefulness of Socratic questioning
strategies and propose ways to induce these properties in LMs on a Maths Word Problem dataset.
However, we need to be careful in using the questioning strategy in real educational contexts, as
improper content can sometimes do more harm than good.

References
Julia Anghileri. Scaffolding practices that enhance mathematics learning. Journal of Mathematics

Teacher Education, 9(1):33–52, 2006.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Reinforcement learning based graph-to-sequence
model for natural question generation. CoRR, abs/1908.04942, 2019. URL http://arxiv.org/
abs/1908.04942.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. Quac: Question answering in context. arXiv preprint arXiv:1808.07036, 2018.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig, Ruslan Salakhutdinov, and
William W. Cohen. Differentiable reasoning over a virtual knowledge base. CoRR, abs/2002.10640,
2020. URL https://arxiv.org/abs/2002.10640.

Zhihao Fan, Zhongyu Wei, Piji Li, Yanyan Lan, and Xuanjing Huang. A question type driven
framework to diversify visual question generation. In IJCAI, pages 4048–4054, 2018.

Heng Gong, Wei Bi, Xiaocheng Feng, Bing Qin, Xiaojiang Liu, and Ting Liu. Enhancing content
planning for table-to-text generation with data understanding and verification. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 2905–2914, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.262.
URL https://aclanthology.org/2020.findings-emnlp.262.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Qingbao Huang, Mingyi Fu, Linzhang Mo, Yi Cai, Jingyun Xu, Pijian Li, Qing Li, and Ho-fung
Leung. Entity guided question generation with contextual structure and sequence information
capturing. Proceedings of the AAAI Conference on Artificial Intelligence, 35:13064–13072, May
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/17544.

Nam Ju Kim, Brian R Belland, and Andrew E Walker. Effectiveness of computer-based scaffolding
in the context of problem-based learning for stem education: Bayesian meta-analysis. Educational
Psychology Review, 30(2):397–429, 2018.

Tassilo Klein and Moin Nabi. Learning to answer by learning to ask: Getting the best of gpt-2 and
bert worlds. arXiv preprint arXiv:1911.02365, 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan, and William Yang Wang. Unsupervised
multi-hop question answering by question generation. arXiv preprint arXiv:2010.12623, 2020.

5

http://arxiv.org/abs/1908.04942
http://arxiv.org/abs/1908.04942
https://arxiv.org/abs/2002.10640
https://aclanthology.org/2020.findings-emnlp.262
https://ojs.aaai.org/index.php/AAAI/article/view/17544

Kishore Papineni, Salim Roukos, Todd Ward, and Wei Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. 10 2002. doi: 10.3115/1073083.1073135.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Ma-
chine Translation: Research Papers, pages 186–191, Belgium, Brussels, October 2018. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/W18-6319.

Ratish Puduppully and Mirella Lapata. Data-to-text generation with macro planning. CoRR,
abs/2102.02723, 2021. URL https://arxiv.org/abs/2102.02723.

Raul Puri, Ryan Spring, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Training
question answering models from synthetic data. arXiv preprint arXiv:2002.09599, 2020.

Chris Quintana, Brian J. Reiser, Elizabeth A. Davis, Joseph Krajcik, Eric Fretz, Ravit Golan Duncan,
Eleni Kyza, Daniel Edelson, and Elliot Soloway. A scaffolding design framework for software to
support science inquiry. Journal of the Learning Sciences, 13(3):337–386, 2004. doi: 10.1207/
s15327809jls1303_4. URL https://doi.org/10.1207/s15327809jls1303_4.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

Brian J. Reiser. Scaffolding Complex Learning: The Mechanisms of Structuring and Problematizing
Student Work. Journal of the Learning Sciences, 13(3):273–304, July 2004. ISSN 1050-8406.
doi: 10.1207/s15327809jls1303_2. URL https://doi.org/10.1207/s15327809jls1303_2.
Publisher: Routledge _eprint: https://doi.org/10.1207/s15327809jls1303_2.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming Zhang, and Qun Liu. Generate &
rank: A multi-task framework for math word problems. arXiv preprint arXiv:2109.03034, 2021.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unsupervised
commonsense question answering with self-talk. arXiv preprint arXiv:2004.05483, 2020.

Katherine Stasaski and Marti A. Hearst. Multiple choice question generation utilizing an ontology.
In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applica-
tions, pages 303–312, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics. doi: 10.18653/v1/W17-5034. URL https://aclanthology.org/W17-5034.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier. Plan-then-generate:
Controlled data-to-text generation via planning. CoRR, abs/2108.13740, 2021. URL https:
//arxiv.org/abs/2108.13740.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ruonan Wang, Yuxi Qian, Fangxiang Feng, Xiaojie Wang, and Huixing Jiang. Co-vqa: Answering
by interactive sub question sequence. arXiv preprint arXiv:2204.00879, 2022.

Zichao Wang, Andrew S Lan, Weili Nie, Andrew E Waters, Phillip J Grimaldi, and Richard G
Baraniuk. Qg-net: a data-driven question generation model for educational content. In Proceedings
of the Fifth Annual ACM Conference on Learning at Scale, pages 1–10, 2018.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. CoRR, abs/2201.11903,
2022. URL https://arxiv.org/abs/2201.11903.

6

https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/2102.02723
https://doi.org/10.1207/s15327809jls1303_4
https://doi.org/10.1207/s15327809jls1303_2
https://aclanthology.org/W17-5034
https://arxiv.org/abs/2108.13740
https://arxiv.org/abs/2108.13740
https://arxiv.org/abs/2201.11903

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 2004.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

David Wood, Jerome S Bruner, and Gail Ross. The role of tutoring in problem solving. Child
Psychology & Psychiatry & Allied Disciplines, 1976.

Terry Wood. Patterns of interaction and the culture of mathematics classrooms. In Cultural perspec-
tives on the mathematics classroom, pages 149–168. Springer, 1994.

Zhipeng Xie and Shichao Sun. A goal-driven tree-structured neural model for math word problems.
In IJCAI, pages 5299–5305, 2019.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan Wang, Jie Shao, and Ee-Peng Lim. Graph-
to-tree learning for solving math word problems. Association for Computational Linguistics,
2020.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] [section 1]

(b) Did you describe the limitations of your work? [Yes] [section 2]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] [section 4]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] [subsection A.1]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] [section 2]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] [section 2]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] [subsection A.1]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] [section 2]
(b) Did you mention the license of the assets? [Yes] [section 2]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] [section 2]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] [section 2]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

7

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

8

A Experiment Details
A.1 Implementation Details
For the training of the models, we used Nvidia Tesla A100 with 40 GB of GPU memory. We ran each
experiment for 50 epochs, with a periodical evaluation on the validation set. Training time without
using rewards is 10 minutes per epoch. With rewards, the training time per epoch is increased to
several hours. We used the T5-large model without modifications for the content planner and question
generation module and GPT-2 small as QA solver.

A.2 Definition of Rewards functions
Fluency: It is important that the generated sub-questions are easily understandable and fluent in
the meaning they represent. Although the QG training objective ensures the syntax and semantics of
the questions generated, rewarding the system to stay fluent is necessary to remove repetitions and
illogical questions.

Rfl = BLEU(q,q′)

where, BLEU(.,.) represents the BLEU score Papineni et al. [2002].

Granularity: As solving an MWP usually involves multiple reasoning steps, asking relevant
questions at each step can help in solving the MWP. Moreover, our questioning strategy is based
on the fact that the questions are organized, structured, and follow a sequence. With the granularity
reward, the model can learn to ask the right number of questions (compared to the number of reasoning
steps to solve MWP) in a specific sequence and refrain from unstructured questions.

Rg = F (q,q′)

where, F (q,q′) = 1 − ||q|−|q′||
|q′| , and |q| and |q′| denote the number of questions in q and q′

respectively.

Answerability: For every generated question, it is important to evaluate if the generated questions
can be answered given context C and can help in answering the overall MWP. We trained an external
QA model that can answer the MWPs by taking help from the sub-questions and evaluating if the
generated question can assist in answering the main problem. The answerability reward is provided
on both a step-by-step basis (if the QA model can answer a sub-part of the main problem) and overall
(if using all sub-questions, whether the final answer was correct or not).

Rans = F (A,A′)

where, F (A,A′) = 1 if the final answer from the QA model is correct when it is given sub-questions
q′ alongside the MWP P, and 0 otherwise. A′ denotes the answer from the QA model and A denotes
the true answer.

We also evaluated the step-by-step performance of the QA model on the generated sub-questions to
check if the QA model can answer the generated sub-questions correctly. This allows us to provide
partial rewards at each step to the generation model. The modified sub-step answerability reward
is F (A,A′) = #a′

|q′| , where #a′ and |q′| denote the number of correct answers to the generated
sub-questions and total number of generated questions respectively.

9

A.3 Generated questions and error analysis

Id Text Generated question prompts
1 James decides to run 3 sprints 3 times a week.

He runs 60 meters each sprint. How many
total meters does he run a week? (540)

How many sprints does James run in a week?
How many meters does James run in a week?

2 Carla is downloading a 200 GB file. Nor-
mally she can download 2 GB/minute, but
40% of the way through the download, Win-
dows forces a restart to install updates, which
takes 20 minutes. Then Carla has to restart
the download from the beginning. How long
does it take to download the file? (160)

Missing: time to download 40% of the file
How many minutes does it take to install
updates?
How many minutes does it take to restart the
download?
How many minutes does it take to download
the file?

3 John buys twice as many red ties as blue ties.
The red ties cost 50% more than blue ties.
He spent $200 on blue ties that cost $40 each.
How much did he spend on ties? (800)

How many blue ties did John buy?
How many red ties did John buy?
How much did the red ties cost?
How much did John spend on ties?

4 Mr. Tan sold his house for $400 000. He
paid the transfer fees that amount to 3% of
the selling price and also paid a brokerage
fee that is 5% of the selling price. If he also
paid $250 000 for the remaining loan amount
of the house, how much is Mr. Tan’s net
proceeds from selling the house? (118000)

How much did Mr. Tan pay in transfer fees
and brokerage fees?
How much did Mr. Tan pay in total?
How much is Mr. Tan’s net proceeds from
selling the house?

5 John drives for 3 hours at a speed of 60
mph and then turns around because he re-
alizes he forgot something very important
at home. He tries to get home in 4 hours
but spends the first 2 hours in standstill traf-
fic. He spends the next half-hour driving at a
speed of 30mph, before being able to drive
the remaining time of the 4 hours going at 80
mph. How far is he from home at the end of
those 4 hours? (45)

How far did John drive in the first 3 hours?
How far did John drive in the remaining 2
hours?
How fast did John drive in the next half-
hour?
How fast did John drive in the remaining 2
hours? Error: remaining 1 and half hour.
How far did John drive in those 4 hours?
How far is John from home at the end of
those 4 hours?

Table 2: Some examples of our generated sub-questions

B Further Experiments
B.1 RQ1: Does sub-questioning help in understanding math concepts better?
We hypothesize that high-quality sub-questioning helps Math QA solvers to reach the correct solution,
especially when questions are relevant to the concept to be learnt, in the right sequence (ordering)
with high granularity in their structure. We use the GPT-2 model as QA solver and fine-tune it on the
training set of the GSM8K dataset. Then, we vary properties of the test sub-questions, and examine
the performance of the QA Solver. Table 3 demonstrates that Socratic sub-questions significantly
improve the model performance from 5.45% to 10.46%. Sub-questioning even helps when only 75%
Socratic questions are retained (denoted as {q}0.75 in the table) or when the order is shuffled (this
might be an artifact of the dataset containing minority of examples with strict order). An interesting
observation is that when the number of sub-questions is reduced by half or lower (while preserving
their order), the model gets confused and performs worse than when it had no sub-questions. Finally,
we take the pre-trained T5 model and without fine-tuning it for our task, we take the outputs, and
used it alongside the problem P as additional information to solve the problem. The performance
goes as low as 2.57%, indicating that non-relevant information degrades the performance.

B.2 Ablation study: Manipulating question properties
Both planning strategies are helpful in generating better questions. To gain a deeper understanding
of how content planner ψ affects generated questions, we further analyze the influence of operators
as a planning strategy. Here, we randomize operators and their sequence and measure change in
performance. Table 4 shows that correct sequence of operators with correct number of operators guide

10

Variation QA Accuracy
P 5.45 (↓ 45%)
P ⊕ {q} 10.46

Granularity
P ⊕ {q}0.25 3.94 (↓ 62%)
P ⊕ {q}0.5 3.35 (↓ 67%)
P ⊕ {q}0.75 9.70 (↓ 7%)

Order
P ⊕ shuffle({q}) 8.94 (↓ 14%)

Relevance
P ⊕ <base-ques> 2.57 (↓ 75%)

Table 3: Comparison of Math QA accuracy (in %) for different variations of experiments with
ground truth data. {q}k represents that only k% of the ground truth sub-questions are used and
selected randomly. For e.g., {q}0.25 represents only 25% of the sub-questions are used. shuffle({q})
represents all sub-questions, but with shuffled order. Finally, <base-ques> are the sub-questions
generated from a T5 large model without fine-tuning on our task. (↓) represents the drop in the
accuracy when compared to the Socratic questions (P ⊕ {q}). ⊕ represents the concatenation
operation.

Planning BLEU BERT F1 #Q
None 51.53 0.783 0.428
Diff op, diff cnt 51.59 0.785 0.415
Diff op, same cnt 54.26 0.786 0.546
Operators (op) 54.98 0.788 0.642

Table 4: Manipulating the planning inputs influences the quality of generated questions and overall
QG model performance. same cnt has the same number of operators as number of reasoning steps
but the types (+-/*) are shuffled, diff cnt has both number and type of operator shuffled.

the generation process better than randomized versions. A gap between correct count of operators
and random count indicates that having a correct number of operators (of any type) is more valuable
than the exact type of operators. We observed that the number of operators guide the model in terms
of the number of questions that need to be asked, while type changes the overall quality. Needless to
say, for the same number of operators, quality matters.

C Related Work
Socratic questioning approaches have evolved within the learning sciences community into the theory
of scaffolding Wood et al. [1976], Reiser [2004], which broadly refers to assisting students in problem-
solving beyond their zone of proximal development Quintana et al. [2004]. Computer-based scaffolds
(e.g., in the form of hints, prompts, feedback) have moderate effects on student learning outcomes
Kim et al. [2018], and our work can be used to automatically generate such scaffolds in a form of
questioning prompts. For mathematics, Wood [1994] analyzed interactions in math classrooms and
proposed two distinct interaction patterns - funneling, which functions by guiding students using
leading/prompting questions to a predetermined solution procedure, and focusing, which functions by
drawing student attention to the critical aspects of the problem. We draw inspiration from this strand
of work. Our overall question generation approach can be conceived to be similar to funneling, with
specific sub-questions focusing on the important domain concepts.

Research on question generation includes visual question generation Fan et al. [2018], Wang et al.
[2022], generation of questions for student assessment Stasaski and Hearst [2017], Wang et al. [2018],
generation of factual questions based on Wikipedia articles Rajpurkar et al. [2016] or generation of
sequential information seeking questions in dialogue-based scenarios Reddy et al. [2019], Choi et al.
[2018]. Other work has also explored similar ideas of improving answerability by question-asking
Klein and Nabi [2019], Shwartz et al. [2020]. However, factual questions do not usually require much
reasoning and mostly boil down to information retrieval from text. In this work, we focus on question
generation for reasoning problems.

Prior work on guided and controlled question generation uses either entities as guiding mechanism
Huang et al. [2021] or reinforcement learning based graph to sequence approach Chen et al. [2019].
Identification of entities and relationships present in the text often uses rule-based or on-shelf
extraction tools, which are hard to extend Dhingra et al. [2020]. Often these single hop questions are

11

combined to form a multi-hop question that require complex reasoning to solve it Pan et al. [2020].
Controllable text generation has been previously explored in data-to-text generation Puduppully and
Lapata [2021], Su et al. [2021]. This is particularly useful for ensuring that the information is correct
or the numbers are encapsulated properly Gong et al. [2020]. Our task has similar requirements.

A final strand of related work lies in the ballpark of math problem solvers. Recent work in this
area uses specialized architectures such as graph-based encoders Zhang et al. [2020] and tree-based
decoders Xie and Sun [2019], and more recently, large pretrained LMs which show state-of-the-art
results Cobbe et al. [2021], Shen et al. [2021], Kojima et al. [2022], Wei et al. [2022], Chowdhery
et al. [2022]. Application of these approaches to the GSM8K dataset (our data context) still holds
considerable room for improvement, primarily in the reasoning capabilities, and latest approaches are
still unable to solve third of the problems.

12

	Introduction
	Methodology
	Focused questions
	Relevant questions
	Overall Loss Function

	Empirical Analysis
	Conclusion
	Experiment Details
	Implementation Details
	Definition of Rewards functions
	Generated questions and error analysis

	Further Experiments
	RQ1: Does sub-questioning help in understanding math concepts better?
	Ablation study: Manipulating question properties

	Related Work

