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Abstract

Ramsey-like problems are ubiquitous in extremal combinatorics and occupy a cen-
tral place in the field. In simple terms, Ramsey theory wishes to find the minimum
size of a large graph structure such that some sought substructure - generally a
clique or an independent set - is guaranteed to exist. Due to considerations of com-
putational complexity, brute force approaches to solving these problems are usually
not very feasible, as the substructures cannot be checked in polynomial time. At
the same time, we seek extremal graphs that completely avoid such substructures to
better understand the graph theory governing their occurrence. We investigate the
feasibility of Graph Neural Networks (GNNs) in terms of indicating and refining
search procedures for finding these special classes of Ramsey-extremal graphs,
which are of interest to mathematicians.

1 Introduction

Neural networks often arrive at superhuman performance in domains governed entirely by logic
such as Chess and Go [1, 2]. Simultaneously, they are also often able to achieve metrics that exceed
the average human at tasks such as image recognition. Despite this, they are not always able to
explain their route to such abilities. This dilemma makes neural methods somewhat unsuitable for
mathematics, which requires writing rigorous proofs that explain every step of a result. Indeed,
the veracity of a conjecture is often of secondary importance to the proof tools, frameworks, and
constructions used to prove or disprove it. While recent advances in language models [3] have enabled
neural nets to increasingly “show their work" [4], it remains largely true that the actual capabilities of
a model usually exceed its legible and explainable capabilities.

Thus, for mathematics, neural networks may be expected to excel at providing counterexamples and
edge cases more than at directly writing proofs. Nowhere is such an ability valued more than in
combinatorics, and we focus on Ramsey theory [5], a key subarea. The key idea of Ramsey theory is
to pose the question :

What is the minimal value of N such that any graph on ≥ N vertices must possess some property ?

The property of interest in this case is generally the existence of a clique (a subset of nodes which
form between themselves a complete graph, i.e. a set of vertices V such that (vi, vj) is an edge in
the graph for all vi, vj ∈ V ) of some size or a corresponding maximum independent set, which is
the “opposite" of a clique : a set of vertices V such that (vi, vj) is not an edge in the graph for all
vi, vj ∈ V . For example, the classic illustration of Ramsey theory asks to show that :

Given 6 people who may be friends or enemies, there is a group of at least 3 friends or enemies.

Denoting “friend" as edge, and “enemy" as no edge, we can see that this is asking to show that any
graph of ≥ 6 vertices has either a clique of size ≥ 3 or a maximum independent set of size ≥ 3. It can
also be shown that 6 is the minimum number to satisfy such a property by finding a counterexample
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on 5 vertices. We will denote this result as R(3, 3) = 6. More generally, if Z is the minimum vertex
count which ensures a clique of size m or a max independent set of size n, R(m,n) = Z.

The values of R(·, ·) are called Ramsey numbers. We will focus on the case m = n. These are called
diagonal Ramsey numbers. The values of R(m,m) are known exactly only upto m = 4. There exist
ranges above this, for instance, R(5, 5) [6, 7] is known to be ≥ 43 and ≤ 48. These bounds become
increasingly loose as m rises [8], and unlike the m = 5 case where the gap between the lower and
upper value is 5, the corresponding gap becomes over 10, 000 even at m = 10. This reflects the
difficulty in precisely finding R(m,m).

Concurrently with this notion, we can discuss (m,n)-free graphs. A graph is (m,n)-free if its max
clique size is ≤ m− 1 and its maximum independent set is ≤ n− 1. Of course, there can be no such
graphs for node counts ≥ R(m,n). However, when R(m,n) is not precisely known, these graphs,
and their constructions, are beneficial in understanding the behaviour of the function R.

Given N ∈ N, we define the problem of generating diagonal Ramsey-extremal graphs, i.e. generating
(m,m)-free graphs on N vertices where m is minimal. For a concrete example, consider N = 17.
We know that R(4, 4) = 18. That implies, that at N = 17 it is possible to generate a graph whose max
clique size and max independent set size are both ≤ 3. Indeed, there is only one such graph [9]. At
N = 16, there are only two. As N grows, the number of possible graphs grows exponentially, which
makes finding such graphs challenging when there are only 1 or 2 suitable candidates. Mathematical
research has been conducted for decades on finding such graphs. Generally, exhaustive search is the
way forward after some criteria such as degree, connectivity have been fulfilled. This is naturally
often undesirable, and hard to scale. We would like to find out if neural approaches can help this area
by generating such graphs en masse.

Unique suitabilities that motivate our choice of problem. There are many unsolved areas of
mathematics of consequence, and one may question why we have chosen this particular area to
focus on over, for instance, attempts to work on the Riemann hypothesis. Ramsey theory fulfills
various criteria which are not easily simultaneously satisfied by other areas of mathematics as a test
of machine learning capabilities. These are :

• Very high legible difficulty. Solving a mathematical statement with machine learning
may reflect either the power of the method, or lack of attempts. Largely, we are interested
in the former, and not the actual solution. Consider advances such as AlphaGo [10] or
AlphaStar [1, 2], in the domain of games, which do not by themselves fulfill a purpose
beyond entertainment. However, AlphaGo has tremendous signal value - it demonstrates
progress in an area which attracts human competition of high skill levels. Ramsey theory
fulfills this criterion - the problem has attracted interest from the top combinatorialists such
as Erdos over a period spanning nearly a century and remains an active area of research in
the present day by noted researchers in the field.

• Sufficiency of low-dimensional concrete constructed instances. Unlike most domains,
the objects in Ramsey theory are relatively low-dimensional, concrete and not very abstract
- graphs of somewhat low (< 100) vertex count. It is not clear, for instance, how to best
encode a group or a vector space, let alone prove or disprove conjectures about them. Further,
in Ramsey theory, counterexamples and extremal graphs have value by themselves, and
are finite and enumerable. It would make no sense, for instance, to ask to generate all
vector spaces which are a counterexample to some statement if the set of counterexamples
was infinite. The parametrization would need to be suitably changed to generate classes
of objects, instead of objects themselves. As another unsuitable scenario, we can consider
number theory. Problems such as the collatz conjecture require working with very large
integers, and encoding them becomes the question to solve.

• Prior track record of computational approaches. In Ramsey theory, we have a large bunch
of extremal graphs already generated for us, ready to use [11, 12]. Most promisingly, these
graphs are often generated by coding them up and simply enumerating them after reducing
the problem search via degree sequences, triangle count and so on. This bruteforcing, based
on “handcrafted" criteria, can be easily seen as a form of proto-data science, amenable to
machine learning methods that can cut down on it.

• Partial approaches have value. In a lot of problems, the solution to a small sub-case has no
value at all, and the community can learn nothing from it. Ramsey theory’s advances, on the
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other hand, often come from extending previous solutions [13], even when these solutions
are somewhat suboptimal. This is encouraging, as we do not expect neural approaches to be
breakthroughs right away.

2 Machine learning approaches to combinatorics

Previously, there have been approaches utilizing Reinforcement Learning (RL) to prove or disprove
conjectures in combinatorics [14]. In RL, the rules are set up and the agent tries to optimize a function,
which would for our case be minimizing the maximum over the clique size and the independent
set. Such approaches can especially find success when the objects are trees and can be Prufer coded
(converted efficiently to sequences), allowing scalability to a relatively high number of nodes.

There is a key difference between solving an arbitrary conjecture in combinatorics, and trying to
approach an already researched problem such as Ramsey graphs. In the latter case, we already have a
well-studied problem, with previously found extremal graphs and bounds. We are not starting from
scratch. This makes non-RL approaches more appropriate. We are interested in gradient ascent-like
methods, i.e. offline optimization [15]. We view our work as moving from posing mathematical
problems as supervised learning problems instead of reinforcement learning ones.

Concretely, our problem setting is as follows. We fix the number of nodes and create a train set of
previously found extremal graphs, collated from combinatorics webpages. We then seek to train a
model M which can reliably tell these extremal graphs apart from a contrasting set of Erdos-Renyi
graphs by learning to predict the maximum of the clique and independent set. Then, we see how
many unseen extremal graphs can be generated using this classifier/regressor, by finding the graph
Gopt which minimizes M(Gopt) through backpropagation.

Recall that the Ramsey objective involves finding the max clique and the max independent set, and
cannot be done in polynomial time. As such, we cannot hope to create a model that, in the general
case, predicts the actual target perfectly. We can however, target to create a model that significantly
improves on randomness and is correct upto some randomness. Note also that we do not need to
predict the actual value, since our objective is gradient ascent. Predicting the correct rank order will
do - and our performance will be measured by correlation statistics of the rank orders, i.e. Spearman
and Kendall correlations. (Pearson correlations on respectively the rank and pairwise correctness.)

3 Approach, results and conclusion

We download the Ramsey-extremal graphs from : https://users.cecs.anu.edu.au/ bdm/data/ramsey.html.
We focus on (4, 4)-free graphs on 14 nodes. We will see if upon creating a test and train dataset pair
consisting of known extremal graphs from R(4, 4) and Erdos-Renyi random graphs with p = 0.5 of
equal size, a Graph Neural Network (GNN) can reliably predict the sought label (the maximum over
the clique and the independent set), the correlation metrics, and the ability to generate graphs that
are unseen which are also extremal by gradient ascent. We add an equal number of random graphs
as the number of extremal graphs to both train and test. Note that for a given node count, if G is
Ramsey-extremal, so is G′, the complement of G. The probability of G,G′ being generated from an
Erdos-Renyi model is maximal at p = 0.5. Of all Erdos-Renyi models (i.e. models in which each
edge is independent and has same probability p), this is the strongest benchmark to compare to.

Methods of parametrization and gradient ascent. We consider the following ways of initializing
the data and model pipeline.

• Create for every graph G, the Laplacian embedding based feature of G as its node attributes
to form the attributed graph Gattr, and predict the label using a GNN. This approach has
the issue that the overall process is :

G → Gattr → GNN → Y

However, the G → Gattr step is not differentiable. This makes the gradient ascent difficult.
This step can be circumvented by directly optimizing over Gattr and forming the adjacency
matrix back from Gattr - this can be done as the node features are Laplacian eigenvectors,
and thus if they are known, we also have a low-rank approximation of the Laplacian and
then from that, the adjacency matrix, around which we can sample.
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• Perform the process of gradient ascent after first learning an embedding zG for every G
through a graph VAE [16]. This process finds a candidate after ascent as zC which can then
be decoded via the VAE decoder. The advantage of this process is that the attribute step can
be as non-differentiable as we like and we can encode Gattr to z. The disadvantage is that
the VAE’s fidelity begins to impact the optimization on top of the predictor network.

• Use a constant Gattr. The simplest example is using the attribute of a vector of 1s for all
nodes in the graph. This allows direct optimization over G without running into backpropa-
gation issues.

If a VAE is not used, we convert the adjacency matrix (Adj) entries to lie in [0, 1] instead of {0, 1},
and optimize over it. In this case, the issue lies with the fact that we are training the GNN to learn a
function - the maximum over clique and independent set - that is hard to define in the case where
every adjacency matrix entry is a positive real number in [0, 1]. Nevertheless, we can try optimizing
over the continuous case and apply randomized rounding (by replacing each Aij with a Bernoulli r.v.
of bias equal to Aij) and try our results. We also try a case where we use no GIN at all and directly
optimize over the matrix using a MLP-like model.

For our GNN, we used a 4-layer GIN [17] of hidden size 100. The Laplacian embedding used was of
4 dimensions, and 30, 000 extremal graphs each were used for train and testing, along with 30, 000
random graphs each in train and test to serve as a “contrast" to distinguish against. For the graph
autoencoder, we built on a standard architecture1 with 2 hidden layers of 40 units each. All our code
was done in DGL+PyTorch. We also check the efficiency of Bayesian optimization [18] instead of
naive gradient ascent at generation of examples. We add Erdos-Renyi (0.5) as a random benchmark.

3.1 Results

Table 1: Comparison of various methods described above to generate Ramsey-extremal graphs on 14
nodes. Standard deviations of the yield, the desired number, are shown by ±. The first method (row)
utilizes optimization over Gattr as described above in the methods. Last row is random benchmark.

Method Accuracy RMSE Pearson Spearman Kendall Yield
Laplacian + [0, 1] Adj + GIN 93.8 1.98 0.61 0.64 0.50 18 ±3
Constant + [0, 1] Adj + GIN 94.2 3.84 0.84 0.85 0.69 42 ±4
Laplacian + GNN-VAE + MLP 93.5 3.11 0.76 0.78 0.64 34 ±4
[0, 1] Adj + MLP (No GIN) 94.5 3.22 0.68 0.72 0.75 12 ±3
Erdos-Renyi (p = 0.5) N/A N/A N/A N/A N/A ≤ 10−5

We present our results in table 3.1. We are able to generate many unseen Ramsey graphs, which we
term Yield. Yield denotes how many non isomorphic and non complementary Ramsey graphs (to
each other or to the train dataset) are generated from gradient ascent out of 10, 000 instances. The
random method did not succeed in generating any random graphs which were extremal over 10, 000
instances, which shows the difficulty. We provide a calculated probability. It can be seen clearly
that our search approaches improve on a random method by many orders of magnitude. We
achieve high correlations and classification accuracies, while RMSE seems less relevant to yield.

We also attempted to generate extremal graphs using the setting of [14] and converting the cross-
entropy method in it to an OpenAI environment and adding other methods such as SAC. Our best
efforts yielded only 3 graphs for N = 14, over ≥ 100, 000 candidates. We consider RL to be not
as attractive when train datasets are available. In the case of the VAE, we performed Bayesian
optimization on top of the representations to see if active acquisition could improve the results. This
led to no statistically significant improvement. We also attempted to generate extremal graphs for
N = 13 and N = 15 using the model for N = 14. We succeeded in finding a yield ≥ 10 for N = 13,
but none for N = 15. This reflects the number of candidate extremal graphs : ≈ 106, 130× 103, 640
for 13, 14, 15 respectively. It indicates generalizing over node counts is hard but not impossible.

Conclusion. We showcase neural models for generating Ramsey-extremal graphs that vastly outper-
form random baselines. Currently, although able to generate some new instances, they are hamstrung
by isomorphism checking and the problem of being able to generate diverse sets at the scale of the

1https://github.com/shionhonda/gae-dgl
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problem (potentially millions of graphs) even when the classifier is accurate upto a correlation. With
the aid of better isomorph-avoiding bayesian optimization methods, we hope to generate diverse sets
and make further progress in this domain, potentially even to solve unknown Ramsey numbers, and
make headway for R(5, 5) in conjunction with RL to construct the train set from scratch.

References
[1] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-

che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[2] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

[5] Ronald L Graham, Bruce L Rothschild, and Joel H Spencer. Ramsey theory, volume 20. John
Wiley & Sons, 1991.

[6] Vigleik Angeltveit and Brendan D McKay. r(5, 5) ≤ 48. arXiv preprint arXiv:1703.08768,
2017.

[7] Geoffrey Exoo. A lower bound for r (5, 5). Journal of graph theory, 13(1):97–98, 1989.

[8] Stanislaw Radziszowski. Small ramsey numbers. The electronic journal of combinatorics,
1000:DS1–Aug, 2011.

[9] Robert E Greenwood and Andrew Mattei Gleason. Combinatorial relations and chromatic
graphs. Canadian Journal of Mathematics, 7:1–7, 1955.

[10] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[11] Brendan D McKay and Stanisław P Radziszowski. Subgraph counting identities and ramsey
numbers. journal of combinatorial theory, Series B, 69(2):193–209, 1997.

[12] Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur, and Hadrien Mélot. House of graphs: a
database of interesting graphs. Discrete Applied Mathematics, 161(1-2):311–314, 2013.

[13] David Conlon, Jacob Fox, and Benny Sudakov. Recent developments in graph ramsey theory.
Surveys in combinatorics, 424(2015):49–118, 2015.

[14] Adam Zsolt Wagner. Constructions in combinatorics via neural networks. arXiv preprint
arXiv:2104.14516, 2021.

[15] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

[16] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[17] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[18] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

5
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A Appendix

A.1 Motivation behind (4,4)-free graphs on 14 nodes

The choice of focusing on 14 nodes might seem a bit peculiar. However, in general, for (m,n)-free
extremal graphs, the most insightful constructions (from the mathematical point of view) tend to
occur when they are constructed with a node count as large as possible (as for very small node counts,
the property trivially holds - the difficulty and usefulness of such an instance grows as we increase
node count). For (4, 4)-free cases, there are ≈ 130× 103 instances for 14 nodes but only 640 for 15
nodes. This abrupt drop in the number of available samples greatly lowers the efficacy of training
based methods and makes our approach unfeasible. Meanwhile, R(5, 5) is as of yet open and lacks
a catalogue of extremal graphs i.e. (5, 5)-free graphs which are already similarly enumerated and
pre-computed. Therefore, focusing on (4, 4)-free graphs on 14 nodes is not ad hoc, but an active
choice of the highest leverage open point of research.

A.2 How does any of this help us understand R?

We have mentioned earlier that constructing these (m,n)-free graphs helps us understand the behavior
of the function R itself. This point needs further elaboration.

Generally, our present day understanding of R(m,m) for m ≥ 5 is of the form [am, bm] i.e. inclusive
ranges. Now, bm >> am becomes increasingly common as we increase m. If we can construct,
given m, (m,m)-free graphs that exceed am, the lower bound is violated and thus am is changed
upwards.

However, the reverse is far more difficult. Constructing a c-node (m,m)-free graph makes the new
am ≥ c+ 1, but if our method fails for a given c, this might indicate that the new bm ≤ c, or that
our method is too weak (and the latter cannot be verified for certainty in the way a construction that
changes am can). Therefore, the future roadmap from this work (from the human perspective) is to
manually examine, through classical proof techniques, value ranges of c where the algorithm cannot
find a (m,m)-free graph, while raising the lower bound through automated means.

Once the bounds are narrow enough, more sophisticated techniques can be employed in the sense that
extremal graphs on nodes N + 1 often arise from extensions of the extremal graphs on N nodes [13],
and RL [14] can be used here once the near-extremal graph is found to modify it into an extremal
graph.

A.3 Why these particular tools ?

The motivation for the VAE requires some elaboration. Generally, given a graph G, the representation
for it is done in two steps : give each vertex n ∈ G a representation, then run a GNN on G, which
creates node level representations hv , which are then pooled (summed/averaged) to get hg the graph
representation.

In this entire process, if G is used as the object to perform gradient steps over, the issue is forming the
representation. For example, suppose the representation for v is the degree of v - there is no problem
here, because the degree is a differentiable row-wise sum of the adjacency matrix, and the overall
process is differentiable.

However, suppose we wish to assign to each v ∈ G an embedding akin to the random walk embedding
over G, or its color under some coloring of the graph [19]. The former can be approximated
by eigendecomposition [20] of suitable transformed matrices and the same is true for Laplacian
embeddings, but these steps require some work to be put into differentiable forms. The latter - color
under some coloring - is an example of a case where we cannot easily write the expression in terms
of the adjacency. In both these cases, the step that breaks is the step of forming the node embedding.
Everything else works. For certain cases, there is a workaround - if A - the adjacency itself - can
be formed from the embedding approximately, we can optimize over the node embeddings directly.
(This occurs with the Laplacian embedding.)

VAE helps here by creating a latent that works with the embedding even if the embedding was
nontrivial to compute. The gradient ascent occurs in the latent space, and is decoded to the structure.
The fact that non-trivially computed embeddings were utilized to learn the latent space does not
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hinder the subsequent gradient ascent. In the place of the VAE, any suitable representation learner
that allows a reconstruction loss is usable.

While this motivates the usage of the VAE, it can be seen that the best result is actually from a
non-VAE method. We still however consider the VAE method worthy of study as it can utilize any
embedding method and there will possibly emerge domain-specific embeddings based on e.g. degree
sequences [21, 22] that can fully take advantage of the VAE setup.

The usage of the GNN on top is simply due to the fact that these tools have succeeded in modeling
physics [23, 24, 25], circuits [26, 27, 28, 29, 30], molecules [31, 32], programs [33, 34] and other
abstract domains [35, 36], and thus are a natural fit.

A.4 Implementation details

The data representations were converted to dgl. Optimization was done via standard RMSE and
SGD, with the output as a continuous prediction (classification-like integer outputs were also tried
but performed slightly worse). In the VAE case, there is also a reconstruction loss as per the original
GAE [16].
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