
Towards automating formalisation of theorem
statements using large language models

Siddhartha Gadgil∗
Department of Mathematics
Indian Institute of Science

Bangalore, India
gadgil@iisc.ac.in

Anand Rao Tadipatri†
Indian Institute of Science Education and Research

Pune, India
anand.tadipatri@students.iiserpune.ac.in

Ayush Agrawal
Microsoft Research

Bangalore, India
t-agrawalay@microsoft.com

Ashvni Narayanan,
London School of Geometry and Number Theory

London, UK
a.narayanan20@imperial.ac.uk

Navin Goyal
Microsoft Research

Bangalore, India
navingo@microsoft.com

Abstract

Mathematics formalisation is the task of writing mathematics (i.e., definitions,
theorem statements, proofs) in natural language, as found in books and papers,
into a formal language that can then be checked for correctness by a program. It
is a thriving activity today, however formalisation remains cumbersome. In this
paper, we explore the abilities of a large language model (Codex) to help with
formalisation in the Lean theorem prover. We find that with careful input-dependent
prompt selection and postprocessing, Codex is able to formalise short mathematical
statements at undergrad level with about 65% accuracy for 120 theorem statements.

1 Introduction

Mathematics (definitions, theorems, proofs, remarks) as found in books and papers is written in a
semi-formal style combining natural language with formal language in specialized notation. We
refer to the language of this style of writing mathematics as natural language or NL. Formalisation
of mathematics consists of writing mathematics in a formal language that can then be checked and
manipulated by a computer. NL mathematics writing, while being more rigorous than writing in
most other domains, falls far short of the standard of detail and rigour required for full formalisation.
Formalisation is done with the help of proof assistants. A proof assistant consists of a formal language
in which mathematical statements can be encoded along with a piece of software that assists in writing
and checking proofs in the formal language up to the foundational axioms. See under Prompt in
Figure 1 for some examples. Formalisation is an old endeavour that is thriving with several actively
developed libraries of formalised mathematics for major proof assistants including Coq, Isabelle,
Lean and Mizar. A major use of proof assistants is in software and hardware verification but here we
are concerned with their applications in mathematics: checking formalised mathematics automatically

∗http://math.iisc.ac.in/ gadgil/
†https://0art0.github.io/lambda-cube/

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Workshop on MATH-AI.

https://en.wikipedia.org/wiki/Automath

results in a much higher degree of confidence in the correctness of proofs. Formalisation promises to
open up new possibilities in mathematical exposition, teaching, research and collaboration [Massot,
2021, Buzzard, 2022]; in addition, it can facilitate automated proof discovery, e.g. [Lample et al.,
2022].

Formalisation of mathematics today poses a barrier to entry because of the need to learn to use proof
assistants. Autoformalisation [Wang et al., 2018] is the task of (semi-)automatically turning a piece
of mathematics in natural language into a formalised one. An autoformalisation tool that speeds-up
formalisation or fully automates it would be of great value by enabling the above advantages of
formalisation and opening up new ones [Szegedy, 2020].

Autoformalisation is challenging: mathematics retains much of the complexity of natural language
while presenting additional challenges such as semantically mapping concepts in the informal
description to those in the formal corpus [Ganesalingam, 2013, Massot, 2021]; and the the amount of
formalised mathematics available is much smaller than code in major programming languages.

In this paper we worked with Lean 4 [de Moura and Ullrich, 2021] – the latest version of the
popular Lean theorem prover. Lean 4 is (in addition to an interactive theorem prover) a full-fledged
programming language with a fast runtime. This allows a seamless integration of proofs, programs
and meta-programs.The rapidly evolving Lean mathematical library (abbreviated mathlib) is one of
the largest libraries of formal mathematics. mathlib is currently 226MB in size. mathlib is monolithic
by design, ensuring that formalisations of different parts of mathematics can be combined easily. The
resulting standardization of terminology in mathlib and its good coverage make Lean an attractive
target for autoformalisation.

Our contributions. In this paper we apply a large language model (specifically, Codex) to the
problem of autoformalisation. We focused on translating theorem statements of a form similar to
docstrings of mathlib to theorems in Lean 4.

For the evaluation dataset, we chose 120 theorem statements at the undergrad level so that the
relevant concepts (background theory and definitions) were mostly already in mathlib. Since
mathlib is substantial (it has a significant fraction of undergrad mathematics curriculum apart
from many advanced results), this is not a restriction. We focused on theorem statements at the
undergrad level from various areas of mathematics. These statements tend to be more challenging
for autoformalisation compared to mathematics competition problems studied in prior work [Wu
et al., 2022] as they often assume more in terms of implicit context and draw from a much larger
background [Wu et al., 2022].

We experimented with using input-dependent prompting, with mathlib as a database. Specifically, we
chose our few-shot prompts to consist of theorem-docstring pairs from mathlib where the docstring
is close in a sentence similarity metric to the statement to be formalised. We also experimented
with filtering outputs generated at high temperatures by checking validity in Lean 4 and some other
post-processing.

Our results showed that there is a strong effect of both prompt engineering and selection, and even
more when used in combination and that a reasonably large fraction are elaborated (i.e., give type-
correct Lean terms) when both prompt engineering and selection is done (the results improve further
when more prompts are used). Further, we see that a high fractions of the completions that were
elaborated were indeed correct, showing that elaboration is a good proxy measure for correctness.

In the context of autoformalisation, we are the first to use input-dependent prompting. Our use of
elaboration for postprocessing is novel. Both of these are greatly facilitated by the availability of
mathlib, and the nature of Lean 4, which gives easy access to its internals and in Lean 4 itself –
the latter allowing shared code and avoiding context switching. Further the easy access of Lean 4
internals allows efficient programmatic checking for elaboration, which can hence be used to filter
outputs at high temperatures and also gives a scalable measure of performance to refine prompt
engineering and for fine-tuning.

Related work While the term autoformalisation was coined in Wang et al. [2018], the problem itself
has a long history; see Wang et al. [2020]. Wang et al. [2020] applied deep learning-based methods
to autoformalisation by treating it as a language translation problem. The recent work Wu et al.
[2022] is closest to ours and stimulated our work. They considered statement autoformalisation in
Isabelle/HOL using LLMs. For their quantitative results, their statements were from middle school

2

https://github.com/leanprover/lean4
https://leanprover-community.github.io/

to undergrad mathematical competitions [Zheng et al., 2022]. These problems use only elementary
concepts. Their quantitative studies are for fixed few-shot prompts. While a direct comparison with
their results is not possible due to the use of different proof assistants and datasets, our method
compares favourably with their method (fixed few-shot prompting with greedy decoding) as shown in
the next section. Our input-dependent prompting is not applicable on their dataset due to the lack
of availability of aligned data at the elementary level of statements in their datasets. Lean Chat is a
fixed-prompt autoformalisation tool for Lean 3 theorem statements based on Codex.

Future work. Using docstrings from mathlib in the present form does not give adequate examples
of complex LATEX formulas and of some mathematical idioms. An additional database of prompts
targeting these could address this. Further, we can make use of Lean’s easily extensible syntax to
incorporate more mathematical notation.

Better equality testing for theorem statements will also result in better filtering. Unlike program
synthesis, for theorem autoformalisation, there is no obvious counterpart of unit tests. Better equality
testing with the correct Lean formal statement, however, can serve the role of unit tests.

2 Evaluation datasets

We used three test sets with 40 natural language statements each. The natural language statements
were of the same form as typical doctrings in mathlib: single sentences often with Lean code
fragments (including names and formulas not in LATEX but in unicode) enclosed in backticks. We call
such strings docstring-style strings.

Our first set consisted of mathematical theorems (and some conjectures) in areas well-represented by
mathlib, such as undergraduate-level number theory, group theory and topology. These were chosen
to represent various areas of mathematics and various levels in a typical undergraduate curriculum.

The other two sets were designed to minimize contamination due to similar results being in the
training of Codex. Our second set consisted of what we called silly statements, such as every vector
space with dimension 2 is finite dimensional. While being true, these were easy and/or absurdly
specific, so unlikely to appear in this precise form anywhere else. We created this set based on
theorems proved in mathlib – with a silly versions of a statement mostly involving the same concepts
and terminology as the statement but with the hypothesis or conclusion modified so that the silly
version is obvious and/or bizarrely specific.

The third set consisted of false statements: these obviously cannot appear in any library. The
statements in this set were closely related to those in mathlib or our first dataset: for example, while
our first dataset had the statement every field is a ring our third dataset had its (false) converse every
ring is a field. In general given a statement in mathlib or our collection of theorems, we created
a related false statement by taking the converse, weakening the hypothesis or strengthening the
conclusion, ensuring that the modified statement is false.

3 Techniques

We used Codex to translate an input text in natural language to code in Lean 4. Codex takes as
input a prompt and returns completion(s), i.e., a guess as to how the text continues until a given stop
token (in our case :=) or token limit. We generated a prompt from the input text and post-processed
completions as described below. Figure 1 is an example of a prompt, the initial result (with one
completion shown) and the result after post-processing. We remark that this example needs prompt
engineering, as we see in Section 4.

Prompt engineering. Given an input text to be translated, we chose example prompts from mathlib
whose docstrings are similar to the input text. We used two notions of similarity: proximity in
sentence embeddings (described further in Section B.4) and keyword matching (described further
in Section B.5), with the number of sentences chosen by the user. This style of prompt design
appears in the previous work, e.g., Jain et al. [2022]. The docstrings and the corresponding Lean code
were extracted from mathlib documentation. From these a prompt was constructed as in Figure 1
following a template, with the prompt consisting of the example doc-strings followed by theorem
statements essentially in the same syntax as Lean Code and doc-strings, followed by the statement to
be translated in the format of a doc-string and an incomplete line with just the word “theorem”.

3

https://github.com/zhangir-azerbayev/lean-chat

Input text: “If a vector space has dimension ‘2‘ then it is finite dimensional.”

Prompt:
/−− If a vector space has a finite basis, then it is finite−dimensional. −/
theorem {K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] {ι : Type w} [fintype ι] (h : basis ι K V) :

finite_dimensional K V :=

. . .

/−− A vector space has dimension at most ‘1‘ if and only if there is a single vector of which all vectors are multiples. −/
theorem {K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] : module.rank K V≤ 1 ↔∃ (v0 : V), ∀ (v : V), ∃

(r : K), r · v0 = v :=

/−− If a vector space has dimension ‘2‘ then it is finite dimensional. −/
theorem

Codex Completion:
{K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] (h : module.rank K V = 2) : finite_dimensional K V

Post-processed code in Lean 4:
theorem ∀ {K : Type u} {V : Type v} [inst : DivisionRing K] [inst_1 : AddCommGroup V] [inst_2 : Module K V],
Module.rank K V = 2 → FiniteDimensional K V

Figure 1: Example of a prompt, the initial result and the result after post-processing. Part of the
prompt was elided to save space; full prompt appears in Appendix B.1.

Post processing. Lean 4 code is compiled in two phases: a parser converts a string into a Syntax
object, and an elaborator converts a Syntax object into a type-correct expression. The elaboration
step is a much stricter analogue of type-checking in a strongly-typed language. It is roughly a formal
analogue of supplying all the implicit details in an NL theorem statement. Lean 4 is unique among
proof assistants in being implemented in Lean 4 and providing an interpreter API, which facilitates
our implementation.

We parsed the Codex completions, translated from Lean 3 to Lean 4 and auto-corrected (as described
in Section B.2) to obtain Syntax objects corresponding to (syntactically valid) completions. We
attempted to elaborate each of these. We see that restriction to completions which are successfully
parsed and elaborated gives a strong filter.

4 Results

We tested the effects of the prompt engineering and post-processing as well as the final quality of
translations for the datasets described in Section 2.

Success rates for the Elaborator. We begin with quantitative results showing the utility of both
prompt engineering and elaboration filtering for the datasets described in Section 2. By elaboration
filtering we mean that of the many (typically 15-20) completions returned by Codex, we only consider
those which are successfully parsed and elaborated. We emphasize that by using the features of Lean
4 the elaboration filtering was programmatic and efficient (which would not be case, for instance, if
each completion was used to generate a program which was checked by an external compiler).

We summarize the number of statements for which some completion was elaborated for each of
the three sets of statements in Table 1. For each set, we considered results with 4 fixed prompts
(those used by Lean Chat) and 4 prompts chosen by sentence similarity. For each of these cases we
considered answers chosen greedily (i.e., temperature 0 and 1 completion) and those obtained by
choosing several completions at temperature 0.8 with filtering and selection. We made three runs
for each configuration, and the result reported is the median. We also ran a configuration with the
Codex recommended default temperature 0.2 and with fixed prompts. The results of this are included
in parentheses in the entries for the greedy case. As 11 of the theorem statements were present in
mathlib we also ran all the configurations excluding these and obtained similar results as above: in
particular 23 of the 29 statements were elaborated with prompt engineering and selection. We see
in the next section that elaboration is a good proxy measure for accuracy. Thus, we can justify the
claims made in the Introduction.

4

Theorems Silly Statements False Statements
Fixed Input-dependent Fixed Input-dependent Fixed Input-dependent

Greedy 20 (18) 21 19 (21) 28 15 (16) 23
Filtered 25 29 29 34 24 30

Table 1: Numbers of elaborated statements; numbers in parenthesis are for temperature 0.2 (instead
of 0) with one completion

false statements silly statements theorem statements
Elaborated 32 34 33

Correct 21 26 30
Some correct 28 32 30

All wrong 4 2 3
Table 2: Correctness of elaborated statements

The example in Figure 1 illustrates the effect of prompt engineering. None of the 15 completions (per
run) were elaborated in the three runs with the fixed (Lean Chat) prompts. The completions often
used the wrong name from mathlib or assumed a definition was at a different level of abstraction (e.g.,
modules versus vector spaces) from that of mathlib. We also saw that a larger number of examples
did lead to more sentences being elaborated, but the effect was not strong enough to quantify robustly.

Correctness of elaboration. We analysed how often completions that were elaborated were correct.
In the case where more than one completion was elaborated, we considered both whether the chosen
completion was correct and whether any of the elaborated completions were correct.

For each of the three sets, we considered a configuration with high temperature and prompt engineer-
ing – specifically, we considered the configuration with the highest number of elaborated statements3,
as our goal was to test elaboration as a proxy measure for correctness. We manually checked the
correctness of the completions for the elaborated completions, as reported in Table 2.

Further, the statements where all completions were wrong involved some concept for which we had
very few prompts available, in part due to the incomplete state of the binary port of mathlib, also
suggesting that elaboration is a good proxy measure.

References
Kevin Buzzard. What is the point of computers? a question for pure mathematicians. In International

Congress of Mathematicians, 2022. URL https://arxiv.org/pdf/2112.11598.pdf.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali, Alípio Mário Jorge, Célia Nunes, and Adam
Jatowt. A text feature based automatic keyword extraction method for single documents. In
European conference on information retrieval, pages 684–691. Springer, 2018.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 - 28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume
12699 of Lecture Notes in Computer Science, pages 625–635. Springer, 2021. doi: 10.1007/
978-3-030-79876-5_37. URL https://doi.org/10.1007/978-3-030-79876-5_37.

Mohan Ganesalingam. The Language of Mathematics - A Linguistic and Philosophical Investigation,
volume 7805 of Lecture Notes in Computer Science. Springer, 2013. ISBN 978-3-642-37011-3.
doi: 10.1007/978-3-642-37012-0. URL https://doi.org/10.1007/978-3-642-37012-0.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis. In Proceed-
ings of the 44th International Conference on Software Engineering, ICSE ’22, page 1219–1231,

3All configurations had temperature 0.8; we used 10 sentence similarity prompts and 4 keyword based
prompts and obtained 15 completions for theorems and silly statements and used 12 sentence similarity prompts
and 8 keyword based prompts and obtained 20 completions for false statements.

5

https://arxiv.org/pdf/2112.11598.pdf
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-642-37012-0

New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392211. doi:
10.1145/3510003.3510203. URL https://doi.org/10.1145/3510003.3510203.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem
proving. CoRR, abs/2205.11491, 2022. doi: 10.48550/arXiv.2205.11491. URL https://doi.
org/10.48550/arXiv.2205.11491.

Patrick Massot. Why formalize mathematics. 2021. URL https://www.imo.
universite-paris-saclay.fr/~pmassot/files/exposition/why_formalize.pdf.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 11 2019. URL http://arxiv.org/abs/1908.10084.

Christian Szegedy. A promising path towards autoformalization and general artificial intelli-
gence. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathe-
matics - 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceed-
ings, volume 12236 of Lecture Notes in Computer Science, pages 3–20. Springer, 2020. doi:
10.1007/978-3-030-53518-6_1. URL https://doi.org/10.1007/978-3-030-53518-6_1.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of
informal to formal mathematics. In Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef, editors, Intelligent Computer Mathematics - 11th International Conference, CICM
2018, Hagenberg, Austria, August 13-17, 2018, Proceedings, volume 11006 of Lecture Notes in
Computer Science, pages 255–270. Springer, 2018. doi: 10.1007/978-3-319-96812-4_22. URL
https://doi.org/10.1007/978-3-319-96812-4_22.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in mizar. In International Conference on Certified
Programs and Proofs, 2020.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. Autoformalization with large language models. NeurIPS 2022, abs/2205.12615, 2022.
doi: 10.48550/arXiv.2205.12615. URL https://doi.org/10.48550/arXiv.2205.12615.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for formal
olympiad-level mathematics. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.
net/forum?id=9ZPegFuFTFv.

6

https://doi.org/10.1145/3510003.3510203
https://doi.org/10.48550/arXiv.2205.11491
https://doi.org/10.48550/arXiv.2205.11491
https://www.imo.universite-paris-saclay.fr/~pmassot/files/exposition/why_formalize.pdf
https://www.imo.universite-paris-saclay.fr/~pmassot/files/exposition/why_formalize.pdf
http://arxiv.org/abs/1908.10084
https://doi.org/10.1007/978-3-030-53518-6_1
https://doi.org/10.1007/978-3-319-96812-4_22
https://doi.org/10.48550/arXiv.2205.12615
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

A The Lean interactive theorem prover

Lean is an Interactive Theorem Prover based on the Calculus of Inductive Constructions (CIC), i.e.,
a system in which results are proved interactively and checked by the system. Lean has a large
number of features that automate or assist in the discovery of proofs, but the verification is done by
a small trusted kernel and can also export proofs to be verified by external checkers (at least three
such independent checkers have been implemented for Lean). Other interactive theorem provers like
Coq, Isabelle and Mizar also are built on similar principles and have been used for formalisation of
mathematics.

The latest version of Lean, Lean 4, is a full-fledged programming language with a fast runtime in
addition to being an interactive theorem prover. Lean 4 is largely implemented in Lean 4, and gives
easy access to its internals to Lean 4 programs – the latter allowing shared code and avoiding context
switching.

The Lean mathematical library (mathlib) includes most of the standard undergraduate curriculum.
Many advanced results have also been formalised building on mathlib. mathlib is monolithic by
design, ensuring that formalisations of different parts of mathematics can be combined easily. The
presence of this library to use and also the resulting standardization of terminology makes Lean an
attractive target for autoformalisation.

The structure of typical proofs in Lean differs from typical ones in the literature. Mathematical proofs
in the literature usually use forward reasoning, where a series of conclusions are deduced starting
with the hypotheses from previous conclusions and known results. A notable exception is proof by
induction, where we begin with the goal and reduce to sub-goals for the base case and the induction
step. Reasoning starting with goals is called backward reasoning.

In Lean (and similar systems), proofs can use both forward and backward reasoning. However,
backward reasoning allows for much more powerful automation within the tactic mode, at the cost of
readability. Lean has powerful tactics like rw (applies an equation or if and only if statement) and
apply(tries to match the goal against the conclusion of the lemma being used) to deal with these.

We illustrate the different styles of Lean proofs by proving in Lean in various ways the result 3 < 7
using only the results ∀n ∈ N, 0 < n + 1 and ∀n,m ∈ N, n ≤ m =⇒ n + 1 ≤ m + 1. In Lean
these are the theorems Nat.zero_lt_succ and Nat.succ_lt_succ. Four proofs (in Lean 4, which
also work in Lean 3) are shown in Figure 2.

theorem three_lt_seven1 : 3 < 7 :=
have l1 : 0 < 4 := Nat.zero_lt_succ
3
have l2 : 1 < 5 := Nat.succ_lt_succ
l1
have l3 : 2 < 6 := Nat.succ_lt_succ
l2
Nat.succ_lt_succ l3

theorem three_lt_seven2 : 3 < 7 :=
Nat.succ_lt_succ (
Nat.succ_lt_succ (Nat.succ_lt_succ

(Nat.zero_lt_succ 3)))

theorem three_lt_seven3 : 3 < 7 :=
by repeat (apply Nat.succ_lt_succ)

apply Nat.zero_lt_succ

theorem three_lt_seven4 : 3 < 7 := by
decide

Figure 2: Four proofs of 3 < 7 in Lean

The first proof is a typical forward reasoning proof making deductions from known results and
previous deductions. The second proof is simply this in a more concise form, something a person
will typically not be able to write correctly except in the simplest cases (indeed the proof given here
was obtained by using the #print command on the third proof). Note that these are complete proofs
in the foundations of Lean.

The third and fourth proof use backward reasoning in tactic mode. Tactics are powerful algorithms
for finding proofs. In the third proof we use the apply tactic to apply results, with repeat saying that
a tactic is to be applied as long as it is valid. The fourth proof uses the decide tactic which depends

7

on a decision procedure. with proofs being implemented for a class of problems. (in this case, as
we checked from the Lean source, the decision procedure only uses the results mentioned above in
proofs).

It is evident that the above backward proofs are more concise and will be easier for a user to produce.
However, in practice a complex mathematical proof in Lean will have mixed forward and backward
reasoning, with forward reasoning taking the form of a sequence of lemmas (in the form of have
statements) leading to the main theorem and backward reasoning used in the proof of each lemma.

B Theorem Statement Translation : Further Details

We sketch more details of the various steps in translating sentences.

B.1 Full Example prompt

The full prompt for Figure 1 is in Figure 3. As mentioned earlier, no completion elaborated when we
used fixed prompts.

Input text: “If a vector space has dimension ‘2‘ then it is finite dimensional.”

Prompt:
/−− If a vector space has a finite basis, then it is finite−dimensional. −/
theorem {K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] {ι :

Type w} [fintype ι] (h : basis ι K V) : finite_dimensional K V :=

/−− A finite dimensional space is nontrivial if it has positive ‘finrank‘. −/
theorem {K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] (h : 0

< finite_dimensional.finrank K V) : nontrivial V :=

/−− A finite dimensional space that is a subsingleton has zero ‘finrank‘. −/
theorem {K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] [h :

subsingleton V] : finite_dimensional.finrank K V = 0 :=

/−− A vector space has dimension at most ‘1‘ if and only if there is a single vector of which all
vectors are multiples. −/

theorem {K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] :
module.rank K V ≤ 1 ↔ ∃ (v0 : V), ∀ (v : V), ∃ (r : K), r · v0 = v :=

/−− If a vector space has dimension ‘2‘ then it is finite dimensional. −/
theorem

Codex Completion:
{K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] (h :
module.rank K V = 2) : finite_dimensional K V

Post-processed code in Lean 4:
theorem ∀ {K : Type u} {V : Type v} [inst : DivisionRing K] [inst_1 : AddCommGroup V]

[inst_2 : Module K V],
Module.rank K V = 2 → FiniteDimensional K V

Figure 3: Complete prompt used in Figure 1.

B.2 Parsing, translation and auto-correction

Given a Codex completion, we first (attempt to) parse this and extract identifiers from the syntax.
These are translated and auto-corrected before re-parsing. The translation step is necessary as the

8

prompt data we have available is in Lean 3, as is most of the data in GitHub on which Codex is
trained. Thus the completions usually use Lean 3/mathlib terminology. Using a prebuilt dictionary,
we translate the Lean 3/mathlib identifiers to those used by the binary port (binport) of mathlib,
with auto-correction attempted for those that do not have valid translations. Both the dictionary
and auto-correction are based on transformations of two forms: case transformations (for example
camel-case versus snake-case) and dropping or adding segments of the form is or has.

B.3 Selection

If more than one completion is correctly elaborated (which is typical when at least one completion is
elaborated), we select the best completion by voting. Namely, we first group elaborated completions
together into groups whose members can be proved to be equal using a certain tactic. The tactic we
use is one that slightly extends reflexivity (i.e., definitional equality). The chosen answer is the first
member of the largest group. In practice, as the present tactic for proving equality is weak, in most
cases this simply picked the first completion of Codex that is valid (i.e., that elaborated).

B.4 Sentence similarity

We use Sentence-Similarity library [Reimers and Gurevych, 2019] for calculating the sentence
embeddings of the doc-strings. We use all-mpnet-base-v2 model, a pretrained transformer model
finetuned over 1 Billion sentence pairs from multiple datasets. This model provided the best quality
embeddings among the hosted models on the library at the time of writing this paper. We compute the
cosine similarity of the sentence-embeddings generated from the input docstring with the collection
of mathlib docstrings and select the top k similar docstrings based on the similarity scores and their
corresponding Lean statements for the example prompts.

B.5 Keyword-based prompting

The purpose of input-dependent prompting for theorem statements is to retrieve a collection of
examples that contain all the relevant details to formalise a given statement, and this is achieved to a
large extent using sentence similarity. However, in optimising for overall similarity, this approach
may leave out smaller details that are nevertheless crucial for formalising the statement correctly. To
address this, we introduce a method of prompting based on keywords that complements sentence-
similarity based retrieval. We used the YAKE keyword extraction tool [Campos et al., 2018] to extract
the keywords from mathlib and store them in a convenient format. When preparing the prompt for
formalising a sentence, we extract the keywords and retrieve a few examples for each keyword, in
addition to using sentence similarity.

9

https://www.sbert.net/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2#training-data
https://www.sbert.net/docs/pretrained_models.html

	Introduction
	Evaluation datasets
	Techniques
	Results
	The Lean interactive theorem prover
	Theorem Statement Translation : Further Details
	Full Example prompt
	Parsing, translation and auto-correction
	Selection
	Sentence similarity
	Keyword-based prompting

