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Abstract

We present a smoothly broken power law functional form that accurately models
and extrapolates the scaling behaviors of deep neural networks (i.e. how the
evaluation metric of interest varies as the amount of compute used for training,
number of model parameters, training dataset size, or upstream performance varies)
for each task within a large and diverse set of upstream and downstream tasks,
in zero-shot, prompted, and fine-tuned settings. This set includes large-scale
vision and unsupervised language tasks, diffusion generative modeling of images,
arithmetic, and reinforcement learning. When compared to other functional forms
for neural scaling behavior, this functional form yields extrapolations of scaling
behavior that are considerably more accurate on this set. Moreover, this functional
form accurately models and extrapolates scaling behavior that other functional
forms are incapable of expressing such as the non-monotonic transitions present in
the scaling behavior of phenomena such as double descent and the delayed, sharp
inflection points present in the scaling behavior of tasks such as arithmetic. Lastly,
we use this functional form to glean insights about the limit of the predictability of
scaling behavior. Code is available at https://github.com/ethancaballero/
broken_neural_scaling_laws

1 Introduction

The amount of compute used for training, number of model parameters, and training dataset size of
the most capable artificial neural networks keeps increasing and will probably keep rapidly increasing
for the foreseeable future. However, no organization currently has direct access to these larger
resources of the future; and it has been empirically verified many times that methods which perform
best at smaller scales often are no longer the best performing methods at larger scales (e.g., one of
such examples can be seen in Figure 2 (right) of Tolstikhin et al. (2021)). To work on, identify, and
steer the methods that are most probable to stand the test-of-time as these larger resources come
online, one needs a way to predict how all relevant performance evaluation metrics of artificial neural
networks vary in all relevant settings as scale increases.

Neural scaling laws Cortes et al. (1994); Hestness et al. (2017); Rosenfeld et al. (2019); Kaplan
et al. (2020); Zhai et al. (2021); Abnar et al. (2021); Alabdulmohsin et al. (2022); Brown et al.
(2020) aim to predict the behavior of large-scale models from smaller, cheaper experiments, allowing
to focus on the best-scaling architectures and algorithms. The upstream/in-distribution test loss
typically (but not always!) falls off as a power law with increasing data, model size and compute.
However, the downstream/out-of-distribution performance, and other evaluation metrics of interest
(even upstream/in-distribution evaluation metrics) are often less predictable, sometimes exhibiting
inflection points (on a linear-linear plot) and non-monotonic behaviors. Discovering universal scaling
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laws that accurately model a wide range of potentially unexpected behaviors is clearly important not
only for identifying that which scales best, but also for AI safety, as predicting the emergence of
novel capabilities at scale could prove crucial to responsibly developing and deploying increasingly
advanced AI systems. The functional forms of scaling laws evaluated in previous work are not up to
this challenge.

One salient defect is that they can only represent monotonic functions. They thus fail to model the
striking phenomena of double-descent (Nakkiran et al., 2021), where increased scale temporarily
decreases test performance before ultimately leading to further improvements. They also lack
the expressive power to model inflection points (on a linear-linear plot), which can be observed
empirically for many downstream tasks, and even some upstream tasks, such as our N -digit arithmetic
task, or the modular arithmetic task introduced by Power et al. (2022) in their work on “grokking".

To overcome the above limitations, we present broken neural scaling laws (BNSL) - a functional
form that generalizes power laws (linear in log-log plot) to “smoothly broken" power laws, i.e.
a smoothly connected piecewise (approximately) linear function in a log-log plot. An extensive
empirical evaluation demonstrates that BNSL accurately model scaling behaviors across a large and
diverse set of both upstream and downstream tasks, in zero-shot, prompted, and fine-tuned settings.
This set includes large-scale unsupervised language and vision tasks, arithmetic, and reinforcement
learning. This functional form yields more considerably accurate extrapolations of scaling behavior
then those achieved in any previous work. It captures well the non-monotonic transitions present in
the scaling behavior of phenomena such as double descent and the delayed, sharp transitions present
in the scaling behavior of tasks such as arithmetic.

2 The Functional Form of Broken Neural Scaling Laws

Figure 1: A Broken Neural Scaling Law (BNSL) (dark black solid line) with 3 breaks (where purple
dotted lines intersect with dark black solid line) decomposed into the individual power laws (dashed
lines that are yellow, blue, red, and green) that it is composed of overlaid on top of it. The 1st and
2nd break are very smooth; the 3rd break is very sharp. See Section 2 for more details.

The general functional form of a broken neural scaling law (BNSL) is given as follows:

y = a+

(
bx−c0

) n∏
i=1

(
1 +

(
x

di

)1/fi
)−ci∗fi

, (1)

where y represents the performance evaluation metric (e.g. prediction error, cross entropy, BLEU
score percentage, F1 score percentage, reward, Elo rating, or FID score) (downstream or upstream)
and x represents a quantity that is being scaled (e.g. number of model parameters, amount of
compute used for training, training dataset size, or upstream performance). The remaining parameters
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a, b, c0, c1...cn, d1...dn, f1...fn are unknown constants that must be estimated by fitting the above
functional form to the (x, y) data points. (In our experiments, SciPy curve-fitting library (Virtanen
et al., 2020) was used.)

The constants in equation 1 are interpreted as follows. Constant n represents the number of (smooth)
“breaks" (i.e. transitions) between n+1 consecutive approximately linear (on a log-log plot) segments,
for a total of n+ 1 approximately linear segments (on a log-log plot). Constant a represents the limit
as to how far the value of y (performance evaluation metric) can be reduced (or maximized) even
if x (the quantity being scaled) goes to infinity. Constant b represents the offset of functional form
on a log-log plot (analogous to the intercept b in y = mx+ b on a linear-linear plot). Constant c0
represents the slope of the first approximately linear region on a log-log plot. Constant ci represents
the difference in slope of the (i)th approximately linear region and (i+ 1)th approximately linear
region on a log-log plot. Constant di represents where on the x-axis the break between the (i)th
and the (i+ 1)th approximately linear region (on a log-log plot) occurs. Constant fi represents the
sharpness of break between the (i)th and the (i+ 1)th approximately linear region on a log-log plot;
smaller (nonnegative) values of fi yield a sharper break and intervals (before and after the (i)th break)
that are more linear on a log-log plot; larger values of fi yield a smoother break and intervals (before
and after the (i)th break) that are less linear on a log-log plot.

Note that, while an intuition for using such approximately piece-wise linear (in log-log plot) function
was that, with enough segments, it could fit well any smooth univariate scaling function, it remained
unclear whether BNSL would also extrapolate well; as we demonstrate below, it does extrapolate
quite accurately in all our experiments. Additionally, we find that the number of breaks needed to
accurately model an entire scaling behavior is often quite small.

3 Related Work

To the best of our knowledge, Cortes et al. (1994) was the first paper to model the scaling of multilayer
neural network’s performance as a power law (also known as a scaling law) (plus a constant) of the
form y = axb + c in which x refers to training dataset size and y refers to test error; we refer to
that functional form as M2. Hestness et al. (2017) showed that the functional form, M2, holds over
many orders of magnitude. Rosenfeld et al. (2019) demonstrated that the same functional form, M2,
applies when x refers to model size (number of parameters). Kaplan et al. (2020) brought “neural"
scaling laws to the mainstream and demonstrated that the same functional form, M2, applies when
x refers to the amount of compute used for training. Abnar et al. (2021) proposed to use the same
functional form, M2, to relate downstream performance to upstream performance. Zhai et al. (2021)
introduced the functional form y = a(x + d)b + c, (referred to by us as M3) where d represents
the scale at which the performance starts to improve beyond the random guess loss (a constant) and
transitions to a power law scaling regime. Alabdulmohsin et al. (2022) proposed functional form
(y − ϵ∞)/((ϵ0 − y)a) = bxc, (referred to by us as M4) where ϵ∞ is irreducible entropy of the data
distribution and ϵ0 is random guess performance, for relating scale to performance and released a
scaling laws benchmark dataset that we use in our experiments.

Hernandez et al. (2021) described a smoothly broken power law functional form (consisting of 5
constants after reducing redundant variables) in equation 6.1 of their paper, when relating scale and
downstream performance. While this functional form can be summed with an additional constant
representing unimprovable performance to obtain a functional form that is mathematically equivalent
to our BNSL with a single break, it is important to note that (i) Hernandez et al. (2021) describes this
form only in the specific context, when exploring how fine-tuning combined with transfer learning
scales as a function of the model size - thus, their functional form contains a break only with respect
to the number of model parameters but not with respect to the dataset size (which we do explore);
(ii) Hernandez et al. (2021) mentioned this equation in passing and as a result did not try to fit or
verify this functional form on any data; (iii) they arrived at it simply via combining the scaling law
for transfer (that was the focus of their work) with a scaling law for pretraining data; (iv) they did not
identify it as a smoothly broken power law, or note any qualitative advantages of this functional form;
(v) they did not discuss the family of functional forms with multiple breaks.

Finally, we would like to mention that smoothly broken power law functional forms, equivalent to
equation 1, are commonly used in the astrophysics literature (e.g. dam (2017)) as they happen to
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model well a variety of physical phenomena. This inspired us to investigate their applicability to a
wide range of deep neural scaling phenomena as well.

4 Empirical Results: Fits and Extrapolations of Functional Forms

We now show the fits and/or extrapolations of various functional forms. In all plots here and in
the quite large appendix, black points are points used for fitting a functional form, green points are
held-out points used for evaluating extrapolation of a functional form fit to the black points, and a red
line is BNSL that has been fit to the black points. All the extrapolation evaluations reported in the
tables are reported in terms of root mean squared log error (RMSLE1) ± root standard log error. See
Appendix C.9 for definition of root standard log error. Unless stated otherwise, every BNSL we fit
only has one break. Please refer to Appendix Section C.11 for further experimental details on fitting
BNSL. All non-math task results (e.g. vision, language, rl, and double descent) are in the appendix.

In the tables and elsewhere, M1 refers to functional form y = axb, M2 refers to functional form
y = axb + c, M3 refers to functional form y = a(x−1 + d)−b + c, and M4 refers to functional form
(y − ϵ∞)/((ϵ0 − y)a) = bxc .

4.1 Inflection Points

We show that BNSL is capable of modeling and extrapolating the scaling behavior of tasks that
have an inflection point on a linear-linear plot such as the task of arithmetic (4-digit addition). Here
we model and extrapolate the scaling behavior of a transformer model (Vaswani et al. (2017)) with
respect to the dataset size on the 4-digit addition task. Other functional forms are mathematically
incapable of expressing inflection points on a linear-linear plot (as shown in Section B) and as a
result, are mathematically incapable of expressing and modeling inflection points (on a linear-linear
plot) that are present in the scaling behavior of 4-digit addition. In Figure 2 left, we show that BNSL
expresses and accurately models the inflection point present in the scaling behavior of 4-digit addition
and as a result accurately extrapolates the scaling behavior of 4 digit addition. For further details
about the hyperparameters please refer to the Appendix Section C.10. Fit of M3 to 4-digit addition
task is also available in Figure 4 of the Appendix for comparison purposes. We also show a fit of
BNSL to Large-Scale BIG-Bench Srivastava et al. (2022) 3-shot arithmetic task with number of
parameters on the x-axis in Figure 3.

Figure 2: 4 Digit Addition. Note that these plots are linear-linear. Each point in the left plot is
the mean of greater than 100 seeds at that dataset size. In the left plot, each point is gathered from
a model trained to do the task of 4-digit addition. In the right plot, each point is gathered from a
noiseless simulation of the BNSL of the task of 4-digit addition.

1RMSLE =
√

(
∑n

i=1(log(yi)− log(ŷi))2)/n
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Figure 3: Large-Scale BIG-Bench Arithmetic. Extrapolation yielded by BNSL on BIG-Bench 3-shot
Arithmetic task with number of parameters on the x-axis. This experimental data is obtained from the
Srivastava et al. (2022) release.

4.2 The Limit of the Predictability of Scaling Behavior

We use BNSL to glean insights about the limit of the predictability of scaling behavior. Recent
papers (Ganguli et al., 2022; Wei et al., 2022) have advertised many tasks as having “unpredictable"
scaling behavior, the most famous of which is the task of arithmetic. In the previous section and in
Figure 2 left, we successfully predicted (i.e. extrapolated) the scaling behavior of 4-digit addition
(arithmetic). However, we are only able to accurately extrapolate the scaling behavior if given some
points from training runs with a training dataset size of at least 720, and the break in which the scaling
behavior of 4-digit addition transitions from one power law to another steeper power-law happens at
around training dataset size of 415. Ideally, one would like to be able to extrapolate the entire scaling
behavior by fitting only points from before the break. In Figure 2 right, we use a noiseless simulation
of the BNSL of 4-digit addition to show what would happen if one had infinitely many training runs
/ seeds to average out all the noisy deviation between runs such that one could recover (i.e. learn
via a curve-fitting library such as SciPy Virtanen et al. (2020)) the learned constant of the BNSL as
well as possible. When using this noiseless simulation, we find that we are only able to accurately
extrapolate the scaling behavior if given some points from training runs with a training dataset size of
at least 415, which is very close to the break. This implies that very near to the break there is limit as
to how small the supremum of the x-axis of the points used for fitting can be if one wants to perfectly
extrapolate the scaling behavior, even if one has infinitely many seeds / training runs.

5 Conclusions

We have presented a smoothly broken power law functional form that accurately models the scaling
behaviors of artificial neural networks for each task from a very large and diverse set of upstream and
downstream tasks. These tasks include large-scale vision tasks, large-scale unsupervised language
tasks, arithmetic, and reinforcement learning. This functional form yields extrapolations of scaling
behavior that are considerably more accurate than other functional forms for modeling the scaling
behavior of artificial neural networks. Additionally, this functional form accurately models many
scaling behaviors that other functional forms are mathematically incapable of expressing such as
non-monotonic transitions present in the scaling behavior of phenomena such as double descent and
delayed, sharp inflection points present in the scaling behavior of tasks such as arithmetic. Finally, we
used this functional form to obtain insights about the limit of the predictability of scaling behavior.
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A Appendix

B Theoretical Limitations of Previously Proposed Scaling Laws

Our use of BNSLs is inspired by the observation that scaling is not always well predicted by a simple
power law; nor are many of the modifications which have been applied in previous works sufficient
to capture the qualitative properties of empirical scaling curves. Here we show mathematically two
qualitative defects of these functional forms:

1. They are strictly monotonic (first-order derivative does not change its sign) and thus unable
to fit double descent phenomena.

2. They cannot express inflection points (second-order derivative does not change its sign),
which are frequently observed empirically. An exception to this is M4, proposed by Alab-
dulmohsin et al. (2022).

Note that these functional forms can exhibit inflection points on the log-log axes which are commonly
used for plotting scaling data (as it was observed in several prior works). However, for inflection
points on a linear-linear plot, the extra expressiveness of broken neural scaling laws appears to
be necessary (and sufficient). Figure 5 and Figure 2, provide examples of BNSLs producing non-
monotonic behavior and inflection points, respectively, establishing the capacity of this functional
form to model these phenomena that occur in real scaling behavior.

name f(x) f ′(x) f ′′(x)

M1 axb abxb−1 ab(b− 1)xb−2

M2 axb + c abxb−1 ab(b− 1)xb−2

M3 a(x−1 + d)−b + c ab
x(1+dx)(d+1/x)b

abx(b−2)(1 + dx)(−2−b)(b− 1− 2dx)

Table 1: Previously proposed functional forms M1, M2, M3 and their (first and second order)
derivatives. See Equation 2 for M4.

M1, M2, M3 functional forms cannot model non-monotonic behavior or inflection points: First,
recall that expressions of the form mn can only take the value 0 if m = 0. We now examine the
expressions for the first and second derivatives of M1, M2, M3, provided in Table 1, and observe
that they are all continuous and do not have roots over the relevant ranges of their variables, i.e.
x > 0 in general and b < 0 in the case of M3 (we require x > 0 because model size, dataset size,
and compute are always non-negative). This implies that, for any valid settings of the parameters
a, b, c, d, x, these functional forms are monotonic (as the first derivative never changes sign), and that
they lack inflection points (since an inflection point must have f ′′(x) = 0).

M4 functional form cannot model non-monotonic behavior. The case of M4 is a bit different,
since the relationship between y and x in this case is expressed as an inverse function, i.e.

x = g(y) =

(
y − ϵ∞

b(ϵ0 − y)a

)1/c

(2)

However, non-monotonicity of y as an inverse function y = g−1(x) is ruled out, since that would
imply two different values of x = g(y) can be obtained for the single value of y – this is impossible,
since f(y) maps each y deterministically to a single value of x. As a result, M4 cannot express
non-monotonic functions.

M4 functional form can model inflection points. It is easy to see that if y = g−1(x) had an
inflection point, then x = g(y) would have it as well. This is because an inflection point is defined as
a point x where f(x) changes from concave to convex, which implies that g(y) changes from convex
to concave, since the inverse of a convex function is concave; the root(s) of g′′(y) are the point(s) at
which this change occurs. Using Wolfram Alpha2 and matplotlib (Hunter, 2007), we observe that
M4 is able to express inflection points, e.g. (a, b, c, ϵ0, ϵ∞, x, y) = (1, 1,−2, 3/4, 1/4, 1/

√
3, 5/8),

or (a, b, c, ϵ0, ϵ∞, x, y) = (2, 1,−3, 2/3, 1/3, (−5/6 +
√
3/2)1/3, 1/

√
3).

2https://www.wolframalpha.com/
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C Additional Empirical Results: Additional Fits and Extrapolations of
Functional Forms

C.1 Fit of M3 (functional form that can’t express inflection point) to 4 digit addition

Figure 4: 4 Digit Addition. Fit of M3 (functional form that can’t express inflection point) to 4 digit
addition.

C.2 Table summarizing results on large-scale scaling laws benchmark of Alabdulmohsin et al.
(2022)

Domain M1 ↑ M2 ↑ M3 ↑ M4 ↑ BNSL ↑
Downstream Image Classification 2.78% 5.56% 13.89% 13.89% 63.89%

Language 10% 10% 25% 0% 55%
Table 2: Percentage of tasks by domain where each functional form is the best for extrapolation of
scaling behavior. Numbers for M1, M2, M3, and M4 were obtained via correspondence with authors
of Alabdulmohsin et al. (2022). See Sections C.3 and C.4 for more details.

C.3 Vision

Using the scaling laws benchmark of Alabdulmohsin et al. (2022), we evaluate how well various
functional forms extrapolate performance on vision tasks as training dataset size increases. In this
vision subset of the benchmark, the tasks that are evaluated are error rate on each of various few-shot
downstream image classification (IC) tasks; the downstream tasks are: Birds 200 Welinder et al.
(2010), Caltech101 Fei-Fei et al. (2004), CIFAR-100 Krizhevsky et al. (2009), and ImageNet Deng
et al. (2009). The following architectures of various sizes are pretrained on subsets of JFT-300M:
big-transfer residual neural networks (BiT) Kolesnikov et al. (2020), MLP mixers (MiX) Tolstikhin
et al. (2021), and vision transformers (ViT) Dosovitskiy et al. (2020). As can be seen in Tables 2 and
3, BNSL yields extrapolations with the lowest RMSLE (Root Mean Squared Logarithmic Error) for
63.89% of tasks of any of the functional forms, while the next best functional form performs the best
on only 13.89% of the tasks.

To view all plots of the BNSL on each of these tasks, see figures 9, 10, 11, 12 in Appendix C.12. To
view all plots of M1, M2, M3, and M4 on each of these tasks, see Appendix A.4 of Alabdulmohsin
et al. (2022).

C.4 Language

Using the scaling laws benchmark of Alabdulmohsin et al. (2022), we evaluate how well various
functional forms extrapolate performance on language tasks as the training dataset size increases.
In this language subset of the benchmark, the tasks that are evaluated are error rates on each of the
various downstream tasks from the BIG-Bench (BB) Srivastava et al. (2022) benchmark and upstream

9



Task Model M1 ↓ M2 ↓ M3 ↓ M4 ↓ BNSL ↓
Birds 200 10-shot BiT/101/3 9.13e-2 ± 2.8e-3 9.13e-2 ± 2.8e-3 9.13e-2 ± 2.8e-3 2.95e-2 ± 1.3e-3 1.76e-2 ± 1.1e-3
Birds 200 10-shot BiT/50/1 6.88e-2 ± 7.5e-4 6.88e-2 ± 7.5e-4 5.24e-2 ± 6.2e-4 2.66e-2 ± 5.3e-4 1.39e-2 ± 3.9e-4
Birds 200 10-shot MiX/B/16 9.15e-2 ± 1.1e-3 9.15e-2 ± 1.1e-3 3.95e-2 ± 7.0e-4 4.62e-2 ± 8.2e-4 3.16e-2 ± 7.0e-4
Birds 200 10-shot MiX/L/16 5.51e-2 ± 1.4e-3 5.51e-2 ± 1.4e-3 5.51e-2 ± 1.4e-3 5.15e-2 ± 1.7e-3 3.46e-2 ± 1.3e-3
Birds 200 10-shot ViT/B/16 6.77e-2 ± 1.1e-3 6.77e-2 ± 1.1e-3 3.52e-2 ± 8.1e-4 1.51e-2 ± 6.2e-4 2.43e-2 ± 8.1e-4
Birds 200 10-shot ViT/S/16 3.95e-2 ± 1.2e-3 3.95e-2 ± 1.2e-3 3.74e-2 ± 1.1e-3 1.85e-2 ± 7.9e-4 2.35e-2 ± 8.4e-4
Birds 200 25-shot BiT/101/3 9.41e-2 ± 3.2e-3 9.41e-2 ± 3.2e-3 9.41e-2 ± 3.2e-3 6.38e-2 ± 2.0e-3 3.94e-2 ± 1.6e-3
Birds 200 25-shot BiT/50/1 1.10e-1 ± 1.0e-3 7.29e-2 ± 8.0e-4 1.52e-2 ± 4.9e-4 1.97e-2 ± 5.6e-4 2.73e-2 ± 6.1e-4
Birds 200 25-shot MiX/B/16 1.40e-1 ± 1.9e-3 1.40e-1 ± 1.9e-3 6.93e-2 ± 1.2e-3 2.11e-2 ± 6.9e-4 1.83e-2 ± 6.2e-4
Birds 200 25-shot MiX/L/16 1.12e-1 ± 2.0e-3 1.12e-1 ± 2.0e-3 1.12e-1 ± 2.0e-3 5.44e-2 ± 1.8e-3 5.04e-2 ± 1.7e-3
Birds 200 25-shot ViT/B/16 9.02e-2 ± 1.6e-3 9.02e-2 ± 1.6e-3 3.75e-2 ± 1.0e-3 1.51e-2 ± 5.7e-4 1.62e-2 ± 6.1e-4
Birds 200 25-shot ViT/S/16 5.06e-2 ± 1.4e-3 5.06e-2 ± 1.4e-3 4.96e-2 ± 1.4e-3 4.02e-2 ± 1.2e-3 2.02e-2 ± 8.5e-4
Birds 200 5-shot BiT/101/3 8.17e-2 ± 2.0e-3 8.17e-2 ± 2.0e-3 8.17e-2 ± 2.0e-3 3.38e-2 ± 1.3e-3 2.47e-2 ± 1.1e-3
Birds 200 5-shot BiT/50/1 5.44e-2 ± 5.6e-4 5.44e-2 ± 5.6e-4 5.44e-2 ± 5.6e-4 2.59e-2 ± 5.4e-4 1.34e-2 ± 3.7e-4
Birds 200 5-shot MiX/B/16 8.27e-2 ± 1.0e-3 8.27e-2 ± 1.0e-3 5.49e-2 ± 7.8e-4 2.14e-2 ± 5.3e-4 1.60e-2 ± 4.7e-4
Birds 200 5-shot MiX/L/16 5.68e-2 ± 1.4e-3 5.68e-2 ± 1.4e-3 5.68e-2 ± 1.4e-3 3.20e-2 ± 9.7e-4 1.85e-2 ± 6.4e-4
Birds 200 5-shot ViT/B/16 3.40e-2 ± 8.9e-4 3.40e-2 ± 8.9e-4 3.40e-2 ± 8.9e-4 1.65e-2 ± 6.7e-4 1.36e-2 ± 5.8e-4
Birds 200 5-shot ViT/S/16 2.75e-2 ± 7.9e-4 2.75e-2 ± 7.9e-4 2.75e-2 ± 7.9e-4 1.20e-2 ± 5.2e-4 1.00e-2 ± 4.8e-4
CIFAR-100 10-shot BiT/101/3 8.57e-2 ± 3.8e-3 8.57e-2 ± 3.8e-3 8.25e-2 ± 3.7e-3 4.77e-2 ± 3.0e-3 3.41e-2 ± 2.7e-3
CIFAR-100 10-shot BiT/50/1 7.44e-2 ± 1.5e-3 1.24e-2 ± 5.8e-4 2.08e-2 ± 7.2e-4 1.24e-2 ± 5.8e-4 1.25e-2 ± 5.8e-4
CIFAR-100 10-shot MiX/B/16 8.77e-2 ± 1.9e-3 8.77e-2 ± 1.9e-3 2.71e-2 ± 1.2e-3 2.37e-2 ± 9.9e-4 2.36e-2 ± 9.4e-4
CIFAR-100 10-shot MiX/L/16 1.05e-1 ± 3.1e-3 1.05e-1 ± 3.1e-3 4.85e-2 ± 2.6e-3 4.97e-2 ± 1.6e-3 5.03e-2 ± 1.6e-3
CIFAR-100 10-shot ViT/B/16 8.98e-2 ± 2.0e-3 8.98e-2 ± 2.0e-3 8.98e-2 ± 2.0e-3 4.98e-2 ± 1.7e-3 3.71e-2 ± 1.4e-3
CIFAR-100 10-shot ViT/S/16 6.84e-2 ± 1.1e-3 2.11e-2 ± 6.6e-4 3.35e-2 ± 8.6e-4 2.54e-2 ± 7.5e-4 2.57e-2 ± 7.5e-4
CIFAR-100 25-shot BiT/101/3 8.77e-2 ± 5.6e-3 8.77e-2 ± 5.6e-3 4.44e-2 ± 3.5e-3 3.40e-2 ± 2.7e-3 2.49e-2 ± 2.2e-3
CIFAR-100 25-shot BiT/50/1 7.31e-2 ± 2.0e-3 2.35e-2 ± 1.5e-3 3.65e-2 ± 1.8e-3 2.35e-2 ± 1.5e-3 1.89e-2 ± 1.1e-3
CIFAR-100 25-shot MiX/B/16 1.08e-1 ± 2.3e-3 4.75e-2 ± 1.6e-3 2.10e-2 ± 9.4e-4 2.24e-2 ± 9.9e-4 2.67e-2 ± 1.1e-3
CIFAR-100 25-shot MiX/L/16 9.79e-2 ± 2.2e-3 9.79e-2 ± 2.2e-3 3.67e-2 ± 1.7e-3 2.98e-2 ± 1.4e-3 3.19e-2 ± 1.5e-3
CIFAR-100 25-shot ViT/B/16 1.07e-1 ± 1.9e-3 1.07e-1 ± 1.9e-3 6.54e-2 ± 1.6e-3 4.80e-2 ± 1.4e-3 2.97e-2 ± 1.9e-3
CIFAR-100 25-shot ViT/S/16 8.03e-2 ± 1.2e-3 2.19e-2 ± 7.4e-4 3.13e-2 ± 8.4e-4 2.27e-2 ± 7.1e-4 3.24e-2 ± 8.5e-4
CIFAR-100 5-shot BiT/101/3 5.94e-2 ± 3.2e-3 5.94e-2 ± 3.2e-3 5.94e-2 ± 3.2e-3 3.30e-2 ± 2.4e-3 2.35e-2 ± 2.0e-3
CIFAR-100 5-shot BiT/50/1 4.87e-2 ± 1.3e-3 4.87e-2 ± 1.3e-3 1.69e-2 ± 8.8e-4 1.87e-2 ± 8.9e-4 1.45e-2 ± 8.7e-4
CIFAR-100 5-shot MiX/B/16 7.07e-2 ± 1.2e-3 7.07e-2 ± 1.2e-3 2.78e-2 ± 8.4e-4 1.76e-2 ± 6.6e-4 1.70e-2 ± 6.3e-4
CIFAR-100 5-shot MiX/L/16 7.06e-2 ± 1.6e-3 7.06e-2 ± 1.6e-3 4.17e-2 ± 1.4e-3 3.32e-2 ± 1.2e-3 3.03e-2 ± 1.1e-3
CIFAR-100 5-shot ViT/B/16 6.27e-2 ± 1.6e-3 6.27e-2 ± 1.6e-3 6.27e-2 ± 1.6e-3 4.30e-2 ± 1.3e-3 2.86e-2 ± 1.1e-3
CIFAR-100 5-shot ViT/S/16 6.93e-2 ± 1.2e-3 2.84e-2 ± 8.2e-4 3.88e-2 ± 8.0e-4 3.16e-2 ± 7.5e-4 3.49e-2 ± 7.7e-4
Caltech101 10-shot BiT/101/3 3.07e-1 ± 2.0e-2 3.07e-1 ± 2.0e-2 1.51e-1 ± 1.3e-2 1.00e-1 ± 1.1e-2 4.97e-2 ± 5.8e-3
Caltech101 10-shot BiT/50/1 3.29e-1 ± 1.6e-2 7.68e-2 ± 5.0e-3 1.13e-1 ± 6.0e-3 6.01e-2 ± 4.4e-3 1.77e-2 ± 2.5e-3
Caltech101 10-shot MiX/B/16 1.35e-1 ± 1.4e-2 1.35e-1 ± 1.4e-2 1.35e-1 ± 1.4e-2 1.92e-1 ± 1.6e-2 2.04e-1 ± 9.7e-3
Caltech101 10-shot MiX/L/16 1.25e-1 ± 1.3e-2 1.25e-1 ± 1.3e-2 1.25e-1 ± 1.3e-2 1.30e-1 ± 1.2e-2 2.13e-1 ± 1.5e-2
Caltech101 10-shot ViT/B/16 7.76e-2 ± 4.3e-3 7.76e-2 ± 4.3e-3 3.11e-2 ± 3.0e-3 5.75e-2 ± 4.4e-3 4.02e-2 ± 3.9e-3
Caltech101 10-shot ViT/S/16 1.95e-1 ± 6.0e-3 3.41e-2 ± 2.9e-3 2.40e-2 ± 2.0e-3 3.41e-2 ± 2.9e-3 2.40e-2 ± 2.0e-3
Caltech101 25-shot BiT/101/3 1.15e-1 ± 6.5e-3 1.15e-1 ± 6.5e-3 1.15e-1 ± 6.5e-3 1.15e-1 ± 6.5e-3 9.86e-2 ± 8.0e-3
Caltech101 25-shot BiT/50/1 3.60e-1 ± 1.9e-2 8.80e-2 ± 5.5e-3 1.43e-1 ± 7.6e-3 4.76e-2 ± 3.6e-3 1.55e-2 ± 1.6e-3
Caltech101 25-shot MiX/B/16 8.28e-2 ± 1.2e-2 8.28e-2 ± 1.2e-2 8.28e-2 ± 1.2e-2 1.65e-1 ± 1.7e-2 1.93e-1 ± 1.3e-2
Caltech101 25-shot MiX/L/16 9.66e-2 ± 1.0e-2 9.66e-2 ± 1.0e-2 9.66e-2 ± 1.0e-2 9.66e-2 ± 1.0e-2 1.49e-1 ± 1.3e-2
Caltech101 25-shot ViT/B/16 1.03e-1 ± 5.6e-3 3.33e-2 ± 2.5e-3 4.46e-2 ± 3.6e-3 3.33e-2 ± 2.5e-3 3.95e-2 ± 5.4e-3
Caltech101 25-shot ViT/S/16 1.77e-1 ± 5.4e-3 3.79e-2 ± 3.1e-3 2.80e-2 ± 1.8e-3 3.79e-2 ± 3.1e-3 3.29e-2 ± 2.1e-3
Caltech101 5-shot BiT/101/3 2.12e-1 ± 1.2e-2 2.12e-1 ± 1.2e-2 2.12e-1 ± 1.2e-2 1.65e-1 ± 9.4e-3 1.87e-2 ± 4.3e-3
Caltech101 5-shot BiT/50/1 2.34e-1 ± 6.1e-3 4.13e-2 ± 2.1e-3 1.61e-2 ± 1.3e-3 4.69e-2 ± 2.1e-3 4.10e-2 ± 2.1e-3
Caltech101 5-shot MiX/B/16 2.43e-1 ± 1.2e-2 2.43e-1 ± 1.2e-2 2.35e-1 ± 1.1e-2 7.28e-2 ± 4.3e-3 1.92e-2 ± 1.9e-3
Caltech101 5-shot MiX/L/16 1.38e-1 ± 9.7e-3 1.38e-1 ± 9.7e-3 1.38e-1 ± 9.7e-3 1.37e-1 ± 9.9e-3 1.63e-1 ± 1.1e-2
Caltech101 5-shot ViT/B/16 1.10e-1 ± 6.3e-3 1.10e-1 ± 6.3e-3 6.02e-2 ± 4.7e-3 6.81e-2 ± 4.8e-3 3.87e-2 ± 3.4e-3
Caltech101 5-shot ViT/S/16 1.90e-1 ± 4.7e-3 3.82e-2 ± 2.6e-3 5.04e-2 ± 2.9e-3 3.82e-2 ± 2.6e-3 2.78e-2 ± 1.8e-3
ImageNet 10-shot BiT/101/3 1.27e-1 ± 2.0e-3 1.27e-1 ± 2.0e-3 7.36e-2 ± 1.1e-3 3.06e-2 ± 7.0e-4 2.08e-2 ± 5.5e-4
ImageNet 10-shot BiT/50/1 9.54e-2 ± 7.2e-4 9.54e-2 ± 7.2e-4 5.75e-3 ± 2.0e-4 1.86e-2 ± 2.8e-4 1.97e-2 ± 2.7e-4
ImageNet 10-shot MiX/B/16 9.34e-2 ± 7.9e-4 9.34e-2 ± 7.9e-4 3.37e-2 ± 2.9e-4 2.32e-2 ± 3.0e-4 1.68e-2 ± 2.5e-4
ImageNet 10-shot MiX/L/16 9.83e-2 ± 1.3e-3 9.83e-2 ± 1.3e-3 9.83e-2 ± 1.3e-3 4.01e-3 ± 1.9e-4 1.44e-2 ± 2.9e-4
ImageNet 10-shot ViT/B/16 4.62e-2 ± 7.1e-4 4.62e-2 ± 7.1e-4 4.62e-2 ± 7.1e-4 1.44e-2 ± 3.0e-4 7.73e-3 ± 2.7e-4
ImageNet 10-shot ViT/S/16 4.74e-2 ± 5.6e-4 4.74e-2 ± 5.6e-4 1.66e-2 ± 2.5e-4 7.18e-3 ± 2.0e-4 3.71e-3 ± 1.4e-4
ImageNet 25-shot BiT/101/3 1.42e-1 ± 2.3e-3 1.42e-1 ± 2.3e-3 6.67e-2 ± 9.1e-4 3.31e-2 ± 8.7e-4 1.85e-2 ± 6.2e-4
ImageNet 25-shot BiT/50/1 1.17e-1 ± 9.2e-4 1.17e-1 ± 9.2e-4 4.06e-3 ± 1.7e-4 1.84e-2 ± 2.6e-4 1.96e-2 ± 2.4e-4
ImageNet 25-shot MiX/B/16 9.59e-2 ± 9.3e-4 9.59e-2 ± 9.3e-4 5.39e-2 ± 4.9e-4 2.04e-2 ± 3.1e-4 8.56e-3 ± 2.3e-4
ImageNet 25-shot MiX/L/16 1.03e-1 ± 1.3e-3 1.03e-1 ± 1.3e-3 1.03e-1 ± 1.3e-3 6.33e-3 ± 2.2e-4 7.60e-3 ± 2.6e-4
ImageNet 25-shot ViT/B/16 5.17e-2 ± 8.8e-4 5.17e-2 ± 8.8e-4 5.17e-2 ± 8.8e-4 1.52e-2 ± 3.8e-4 1.98e-2 ± 4.3e-4
ImageNet 25-shot ViT/S/16 5.52e-2 ± 4.4e-4 4.12e-2 ± 3.4e-4 9.65e-3 ± 2.3e-4 7.78e-3 ± 2.1e-4 6.11e-3 ± 2.4e-4
ImageNet 5-shot BiT/101/3 9.24e-2 ± 1.4e-3 9.24e-2 ± 1.4e-3 9.24e-2 ± 1.4e-3 2.09e-2 ± 7.9e-4 8.05e-3 ± 5.0e-4
ImageNet 5-shot BiT/50/1 8.95e-2 ± 6.7e-4 8.95e-2 ± 6.7e-4 1.53e-2 ± 2.2e-4 1.11e-2 ± 2.3e-4 7.94e-3 ± 2.1e-4
ImageNet 5-shot MiX/B/16 9.09e-2 ± 7.2e-4 9.09e-2 ± 7.2e-4 3.01e-2 ± 2.8e-4 1.95e-2 ± 2.7e-4 9.60e-3 ± 2.3e-4
ImageNet 5-shot MiX/L/16 7.99e-2 ± 9.7e-4 7.99e-2 ± 9.7e-4 7.99e-2 ± 9.7e-4 9.92e-3 ± 4.5e-4 5.68e-3 ± 2.4e-4
ImageNet 5-shot ViT/B/16 4.11e-2 ± 6.3e-4 4.11e-2 ± 6.3e-4 4.11e-2 ± 6.3e-4 1.55e-2 ± 2.8e-4 1.29e-2 ± 2.7e-4
ImageNet 5-shot ViT/S/16 4.20e-2 ± 4.1e-4 4.20e-2 ± 4.1e-4 2.40e-2 ± 2.6e-4 8.02e-3 ± 1.9e-4 5.51e-3 ± 1.7e-4

Table 3: Extrapolation Results on scaling behavior of Downstream Vision Tasks. See Section C.3
for more details. Numbers for M1, M2, M3, and M4 obtained via correspondence with authors of
Alabdulmohsin et al. (2022).
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test cross-entropy of various models trained to do language modeling (LM) and neural machine
translation (NMT). All LM and BB tasks use a decoder-only language model. As can be seen in
Table 2 and 4, BNSL yields extrapolations with the lowest RMSLE (Root Mean Squared Logarithmic
Error) for 55% of tasks of any of the functional forms, while the next best functional form performs
the best on only 25% of the tasks.

To view all plots of the BNSL on each of these tasks, see Figures 13, 14, 15 in Appendix C.12.

To view plots of M1, M2, M3, and M4 on these tasks, see Figure 8 of Alabdulmohsin et al. (2022).

Domain Task Model M1 ↓ M2 ↓ M3 ↓ M4 ↓ BNSL ↓
BB date understanding, 1-shot 2.62e+8 Param 3.19e-2 ± 9.6e-4 3.19e-2 ± 9.6e-4 4.67e-3 ± 1.4e-4 3.19e-2 ± 9.6e-4 1.81e-2 ± 3.9e-4
BB date understanding, 2-shot 2.62e+8 Param 2.86e-2 ± 6.2e-4 2.86e-2 ± 6.2e-4 4.83e-3 ± 4.1e-4 2.86e-2 ± 6.2e-4 5.41e-3 ± 1.0e-3
BB linguistic mappings, 1-shot 2.62e+8 Param 1.66e-2 ± 5.5e-4 1.62e-2 ± 5.4e-4 1.66e-2 ± 5.5e-4 1.33e-2 ± 3.8e-4 1.13e-2 ± 2.2e-4
BB linguistic mappings, 2-shot 2.62e+8 Param 1.70e-2 ± 6.5e-4 1.70e-2 ± 6.5e-4 1.70e-2 ± 6.5e-4 1.06e-2 ± 5.1e-4 9.51e-3 ± 5.1e-4
BB mult data wrangling, 1-shot 2.62e+8 Param 1.07e-2 ± 1.0e-3 1.07e-2 ± 1.0e-3 1.07e-2 ± 1.0e-3 6.66e-3 ± 7.3e-4 6.39e-3 ± 4.6e-4
BB mult data wrangling, 2-shot 2.62e+8 Param 1.57e-2 ± 1.5e-3 1.57e-2 ± 1.5e-3 1.57e-2 ± 1.5e-3 5.79e-3 ± 7.0e-4 2.67e-3 ± 2.7e-4
BB qa wikidata, 1-shot 2.62e+8 Param 4.27e-3 ± 8.9e-4 4.32e-3 ± 8.2e-4 4.27e-3 ± 8.9e-4 4.32e-3 ± 8.2e-4 4.68e-3 ± 7.3e-4
BB qa wikidata, 2-shot 2.62e+8 Param 4.39e-3 ± 7.0e-4 4.66e-3 ± 6.4e-4 4.39e-3 ± 7.0e-4 9.02e-3 ± 6.9e-4 8.05e-3 ± 7.3e-4
BB unit conversion, 1-shot 2.62e+8 Param 8.30e-3 ± 4.4e-4 8.30e-3 ± 4.4e-4 1.48e-3 ± 2.7e-4 4.79e-3 ± 3.4e-4 5.73e-2 ± 4.6e-3
BB unit conversion, 2-shot 2.62e+8 Param 1.07e-2 ± 4.4e-4 1.07e-2 ± 4.4e-4 7.50e-3 ± 5.5e-4 7.55e-3 ± 5.1e-4 7.74e-2 ± 5.7e-3
LM upstream test cross-entropy 1.07e+9 Param 1.71e-2 ± 6.0e-4 1.66e-3 ± 5.1e-5 4.50e-3 ± 5.9e-5 1.28e-3 ± 3.9e-5 9.71e-4 ± 3.2e-5
LM upstream test cross-entropy 1.34e+8 Param 1.43e-2 ± 4.8e-4 1.46e-3 ± 6.8e-5 6.46e-4 ± 5.1e-5 1.46e-3 ± 6.8e-5 9.01e-4 ± 5.5e-5
LM upstream test cross-entropy 1.68e+7 Param 6.37e-3 ± 9.4e-5 3.03e-4 ± 1.2e-5 1.56e-3 ± 3.5e-5 3.03e-4 ± 1.2e-5 4.34e-4 ± 1.8e-5
LM upstream test cross-entropy 2.62e+8 Param 1.55e-2 ± 7.2e-4 9.20e-4 ± 9.7e-5 3.97e-3 ± 1.3e-4 9.20e-4 ± 9.7e-5 2.05e-3 ± 5.6e-5
LM upstream test cross-entropy 4.53e+8 Param 1.65e-2 ± 6.6e-4 7.41e-4 ± 9.8e-5 6.58e-4 ± 6.6e-5 7.41e-4 ± 9.8e-5 5.86e-4 ± 7.7e-5
NMT upstream test cross-entropy 28 Enc, 6 Dec 1.71e-1 ± 0 5.64e-2 ± 0 3.37e-2 ± 0 1.81e-2 ± 0 1.69e-2 ± 0
NMT upstream test cross-entropy 6 Enc, 28 Dec 2.34e-1 ± 0 5.27e-2 ± 0 1.65e-2 ± 0 4.44e-2 ± 0 1.56e-2 ± 0
NMT upstream test cross-entropy 6 Enc, 6 Dec 2.62e-1 ± 0 3.84e-2 ± 0 8.92e-2 ± 0 2.05e-2 ± 0 1.37e-3 ± 0
NMT upstream test cross-entropy Dec-only, LM 2.52e-1 ± 0 1.03e-2 ± 0 3.28e-2 ± 0 8.43e-3 ± 0 7.33e-3 ± 0
NMT upstream test cross-entropy Transformer-

Enc, LSTM-
Dec

1.90e-1 ± 0 1.26e-2 ± 0 6.32e-2 ± 0 1.26e-2 ± 0 8.30e-3 ± 0

Table 4: Extrapolation Results on scaling behavior of Language Tasks. See Section C.4 for more
details. Numbers for M1, M2, M3, and M4 were obtained via correspondence with authors of
Alabdulmohsin et al. (2022). BB stands for BIG-Bench (Srivastava et al., 2022). NMT stands for
Neural Machine Translation. LM stands for Language Modeling.

C.5 Non-Monotonic Scaling

We show that BNSL accurately models non-monotonic scaling behaviors that are exhibited by
Transformers (Vaswani et al. (2017)) in double descent (Nakkiran et al., 2021) in Figure 5. Other
functional forms are mathematically incapable of expressing non-monotonic behaviors (as shown in
Section B).

Figure 5: Fit of BNSL to Double Descent. Both plots are of transformers trained to do neural
machine translation via minimizing cross-entropy. Experimental data of left figure is obtained from
Figure 8 top of Nakkiran et al. (2021); “Model Width" on the x-axis refers to embedding dimension
dmodel of the transformer. Experimental data of the right figure is obtained from Figure 11b of
Nakkiran et al. (2021).
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C.6 Reinforcement Learning

We show that BNSL accurately models and extrapolates the scaling behaviors of various multi-agent
and single-agent reinforcement learning algorithms trained in various environments. In the top left
plot and top right plot and bottom left plot of Figure 6, BNSL accurately models and extrapolates
the scaling behavior of the AlphaZero algorithm trained to play the game Connect Four from Figure
4 and Figure 5 and Figure 3 respectively of Neumann and Gros (2022); the x-axes respectively are
compute (FLOPs) used for training, training dataset size (states), and number of model parameters. In
Figure 6 bottom right, BNSL accurately models and extrapolates the scaling behavior of the Proximal
Policy Optimization (PPO) algorithm Schulman et al. (2017) trained to play the Procgen (Cobbe
et al., 2020) game called Heist.

Figure 6: Extrapolation of BNSL on Reinforcement Learning Scaling Experimental Data. Experi-
mental data of the top left plot and top right plot and bottom left plot is from Figure 4 and Figure
5 and Figure 3 respectively of Neumann and Gros (2022). Experimental Data of the bottom right
plot is from Figure 2 of Cobbe et al. (2020). Top left plot is the compute-optimal Pareto frontier. See
Section C.6 for more details.

C.7 Extrapolation Results for Diffusion Generative Models of Images

In Figure 7, we show that BNSL accurately extrapolates the scaling behavior of Diffusion Generative
Models of Images from Figure 10 of Nichol and Dhariwal (2021) when Negative Log-likelihood
(NLL) or Frechet Inception Distance (FID) score is on the y-axis and compute used for training is on
the x-axis; compute is scaled in the manner that is Pareto optimal with respect to the performance
evaluation metric on the y-axis.

C.8 Extrapolation Results when Upstream Performance is on the x-axis

In Figure 8, we show that BNSL accurately extrapolates the scaling behavior when upstream perfor-
mance is on the x-axis and downstream performance is on the y-axis. The upstream task is supervised
pretraining of ViT (Dosovitskiy et al., 2020) on subsets of JFT-300M (Sun et al., 2017). The down-
stream task is 20-shot ImageNet classification. The experimental data of this scaling behavior is
obtained from Figure 5 of Abnar et al. (2021).
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Figure 7: Extrapolation Results of BNSL for scaling behavior of Diffusion Generative Models
of Images. Frechet Inception Distance (FID) score is on the y-axis in the left plot. Negative log-
likelihood (NLL) is the y-axis in the right plot. For both plots, compute used for training is on the
x-axis and Imagenet 64x64 is the evaluation dataset. Experimental data of scaling behavior obtained
from Figure 10 of Nichol and Dhariwal (2021). See Section C.7 for more details.

Figure 8: Extrapolation Results of BNSL for scaling behavior when Upstream Performance is on the
x-axis and Downstream Performance is on the y-axis. Experimental data of scaling behavior obtained
from Figure 5 of Abnar et al. (2021). The upstream task is supervised pretraining of ViT (Dosovitskiy
et al., 2020) on subsets of JFT-300M (Sun et al., 2017). The Downstream Task is 20-shot ImageNet
classification. See Section C.8 for more details.

C.9 Definition of Root Standard Log Error

error = (log(yi)− log(ŷi))
2)

µerror =
1

N

N∑
i=1

error

σerror =

√√√√ 1

N − 1

N∑
i=1

(errori − µerror)2

Root_Standard_Log_Error =

√
µerror +

σerror√
len(ŷ)

−√
µerror

C.10 Experimental details of Section 4.1

We perform an extensive set of experiments to model and extrapolate the scaling behavior for the
4-digit arithmetic addition task with respect to the training dataset size. Our code is based on the
minGPT implementation Karpathy (2020). We set the batch size equal to the training dataset size.

13



We do not use dropout or a learning rate decay here. Each experiment was run on a single V100 GPU
and each run took less than 2 hours. For our experiments we train the transformer model using the
following set of hyperparameters:

Dmodel 128
DMLP 512

Number of heads 2
Number of transformer blocks (i.e. layers) 1

Learning rate 0.0001
Weight Decay 0.1

Dropout Probability 0.0
Dataset sizes 144-1008
Vocab Size 10

Table 5: Hyperparameters for 4-digit addition task

C.11 Experimental details of fitting BNSL

We fit BNSL as follows: We first use scipy.optimize.brute to do a grid search of the values of the
constants (a, b, c0, c1...cn, d1...dn, f1...fn) of BNSL that best minimize the mean squared log error
(MSLE) between the real data and the output of BNSL. We then use the values obtained from the
grid search as the initialization of the non-linear least squares algorithm of scipy.optimize.curve_fit.
We then use the non-linear least squares algorithm of scipy.optimize.curve_fit to minimize the mean
squared log error (MSLE) between the real data and the output of BNSL.

The version of MSLE we use for such optimization is the following numerically stable variant:

Numerically_Stable_MSLE =

n∑
i=1

((log(yi + 1)− log(ŷi + 1))2)/n
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C.12 Plots of BNSL Extrapolations on Scaling Laws Benchmark of Alabdulmohsin et al.
(2022)

Figure 9: Birds 200
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Figure 10: CIFAR-100
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Figure 11: Caltech101. From eyeballing, we think the subset of Caltech101 with unsatisfactory
extrapolations has unsatisfactory extrapolations due to the maximum (along the x-axis) of the black
point used for fitting being near or before a break; this is accentuated by not having enough points for
fitting for the SciPy fitter to be able to determine whether the break is an actual break or just noisy
deviation.
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Figure 12: ImageNet
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Figure 13: BIG-Bench (BB). From eyeballing, we think the subset of BIG-Bench with unsatisfactory
extrapolations has unsatisfactory extrapolations due to the maximum (along the x-axis) of the black
point used for fitting being near or before a break; this is accentuated by not having enough points for
fitting for the SciPy fitter to be able to determine whether the break is an actual break or just noisy
deviation.

Figure 14: Neural Machine Translation (NMT)

Figure 15: Language Modeling (LM)
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