
Draft, Sketch, and Prove: Guiding Formal
Theorem Provers with Informal Proofs

Anonymous submission

Abstract

The formalization of existing mathematical proofs is a notoriously difficult process.1

Despite decades of research on automation and proof assistants, writing formal2

proofs remains arduous and only accessible to a few experts. While previous studies3

to automate formalization focused on powerful search algorithms, no attempts were4

made to take advantage of available informal proofs. In this work, we introduce5

Draft, Sketch, and Prove (DSP), a method that maps informal proofs to formal proof6

sketches, and uses the sketches to guide an automated prover by directing its search7

to easier sub-problems. We investigate two relevant setups where informal proofs8

are either written by humans or generated by a language model. Our experiments9

and ablation studies show that large language models are able to produce well-10

structured formal sketches that follow the same reasoning steps as the informal11

proofs. Guiding an automated prover with these sketches enhances its performance12

from 20.9% to 39.3% on a collection of mathematical competition problems.

Figure 1: Draft, Sketch, and Prove. Starting with an informal statement, our framework yields a formal proof
through a three-stage process: drafting informal proofs, mapping them into formal sketches, and proving the
remaining conjectures. Concretely, an informal statement is a mathematical problem described in a mixture
of natural and mathematical languages (e.g., formulae in LATEX). Then, we use a large language model to
autoformalize each informal proof into a formal sketch, which is a skeleton of the formal proof with open
conjectures left unproven (indicated by the <proof> blocks). The formal sketch mirrors the structure of the
informal proof. Finally, the open conjectures/gaps inside each formal sketch are proved by an off-the-shelf prover.13

1 Introduction14

Formal proof automation is a challenging task that has been the focus of increased attention in recent15

years (Bansal et al., 2019b; Polu & Sutskever, 2020; Lample et al., 2022; Jiang et al., 2022; Wu et al.,16

2022). However, deep learning approaches have not been as successful as in other domains, mainly17

because of the scarcity of formal data. To address the scarcity of formal proofs, previous studies18

have proposed to use synthetic data (Wu et al., 2021), self-supervision (Polu & Sutskever, 2020;19

Han et al., 2022), or reinforcement learning (Bansal et al., 2019a; Polu et al., 2022) to synthesize20

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Workshop on MATH-
AI. Do not distribute.

additional formal training data. Although these methods alleviate the data insufficiency to some21

degree, none are able to capitalize on the bulk of human-written mathematical proofs.22

We give a schematic diagram of the DSP method in Figure 1 and describe it in Section 2. Recent23

work (Wu et al., 2022) demonstrates the feasibility of automatically translating informal statements24

into formal ones with large language models. DSP goes beyond and leverages large language models25

to generate formal proof sketches (Wiedijk, 2003) from informal proofs. Proof sketches consist of26

high-level reasoning steps that can be interpreted by formal systems such as interactive theorem27

provers. They differ from complete formal proofs in that they contain sequences of intermediate28

conjectures without justification. An example of informal proof with its corresponding formal proof29

sketch is provided in Appendix A. In the last step of DSP, we elaborate the formal proof sketch into30

a full formal proof using an automated prover to prove all intermediate conjectures.31

We perform experiments to generate formal proofs of problems from the miniF2F dataset (Zheng32

et al., 2022) and show that a large portion of theorems can be proved automatically with this method.33

We investigate two settings where the informal proofs are either written by humans or drafted by34

a large language model trained on mathematical text. These two settings correspond to situations35

frequently occurring during the formalization of existing theories, where informal proofs are usually36

available, but sometimes left as exercises to the reader or missing due to space limits in the margin.37

Contributions:38

• We introduce a novel approach to leverage informal proofs to guide automated provers with39

formal proof sketches.40

• To evaluate our approach, we build a dataset of manually curated informal statements and41

informal proofs aligned with formal statements in the miniF2F dataset (Zheng et al., 2022).42

• We increase the proportion of problems solved by an automated prover on miniF2F from43

20.9% to 37.7%, given language-model-generated informal proofs, and up to 39.3% when44

proofs are written by humans.45

2 Method46

In this section, we describe our Draft, Sketch, and Prove (DSP) method for formal proof automation,47

which leverages informal proofs to guide automated formal theorem provers with proof sketches. We48

assume that each problem comes with an informal statement and a formal statement describing the49

problem. Our pipeline consists of three stages (depicted in Figure 1), which we present below.50

2.1 Drafting informal proofs51

The initial phase of the DSP method consists in finding an informal proof for a problem according to52

its description in natural mathematical language. The resulting informal proof is seen as a draft for the53

subsequent steps. In mathematical textbooks, proofs of theorems are in general provided, but are some-54

times missing or incomplete. Therefore, we consider two settings corresponding to the presence or ab-55

sence of the informal proofs. In the first, we assume that a “ground-truth” informal proof (i.e., written56

by a human) is available, which is a typical scenario in the formalization of existing mathematical the-57

ories. In the second setting, we make a more general assumption that the ground-truth informal proof58

is not given, and draft proof candidates with a large language model trained on informal mathematical59

data. The language model removes the dependence on human proofs and can produce multiple alterna-60

tive solutions for every problem. Although there is no easy way to automatically verify the correctness61

of these proofs, the informal proof only needs to be useful for producing a sketch in the next stage.62

2.2 Mapping informal proofs into formal sketches63

A formal proof sketch encodes the structure of a solution and leaves out low-level details (Wiedijk,64

2003). Intuitively, it is a partial proof that outlines high-level conjecture statements. A concrete65

example of a proof sketch is shown in Figure 2. Although informal proofs often leave aside low-level66

details, (e.g., by stating their triviality), these details cannot be discharged in a formal proof, making67

straightforward informal-to-formal proof translation difficult. Instead, we propose to map informal68

proofs to formal proof sketches that share the same high-level structures. The low-level details69

2

missing from a proof sketch can later be filled by an automated prover. Since large informal-formal70

parallel corpora do not exist, standard machine translation methods are unsuitable for this task.71

Rather, we use the few-shot learning abilities of a large language model. Specifically, we prompt the72

model with a few example pairs containing informal proofs and their corresponding formal sketches,73

followed by an informal proof yet to be translated. We then let the model generate the subsequent74

tokens to obtain the desired formal sketch. We refer to this model as an autoformalizer.75

2.3 Proving open conjectures in the sketches76

As the last part of the process, we rely on off-the-shelf automated provers to fill in the missing77

low-level details in the proof sketches, where an “automated prover” refers to a system capable78

of producing formally verifiable proofs. Our framework is agnostic to the specific choice of the79

automated prover: it can be symbolic provers such as heuristic tactics or proof automation tools,80

neural-network-based provers, or even hybrid approaches. If the automated prover successfully closes81

all the gaps in the proof sketch, it returns the final formal proof which can be checked against the82

problem’s specification. If the automated prover fails (e.g., it exceeds the allocated time limit), we83

consider the evaluation to be unsuccessful.84

3 Experiments85

3.1 Dataset and evaluation86

We evaluate our method on the miniF2F dataset (Zheng et al., 2022). The dataset contains the formal87

statements of 488 problems from high-school mathematical competitions, written in three formal88

languages: Lean, HOL-Light, and Isabelle. They are split into a valid set and a test set, composed of89

244 problems each. In this work, we choose to experiment with Isabelle.90

The miniF2F dataset is comprised of problems from three source categories: (1) 260 problems sam-91

pled from the MATH dataset (Hendrycks et al., 2021); (2) 160 problems from actual high-school math-92

ematical competitions (AMC, AIME, and IMO); (3) 68 crafted problems at the same difficulty level as93

(2). We employ three different methods to obtain informal statements and proofs from these sources.94

For source (1), we access the informal statements and proofs from the MATH dataset; for (2), we95

retrieve their informal statements and proofs from the AOPS website 1; and for (3), we manually write96

down their informal statements and proofs. Thus we gather a parallel set of 488 informal statements,97

informal proofs, and formal statements. This dataset provides the informal statements and proofs for98

our experiment in the human-as-informal-proof-writer setting and will be released upon publication.99

Our task is to generate formal proofs for problems as they are formally stated in miniF2F. We consider100

a proof valid if and only if it (a) does not contain “cheating” keywords (sorry and oops) that exit101

a proof without completing it, and (b) Isabelle is able to verify the corresponding formal statement102

with the proof. We use the Portal-to-ISAbelle API by Jiang et al. (2021) to interact with Isabelle.103

3.2 Baselines104

Sledgehammer As a baseline, we attempt to prove the formal statement directly with Sledgehammer,105

a popular proof automation tool in Isabelle. We use the default Sledgehammer configuration in106

Isabelle2021, including a 120-second timeout and the five automated theorem provers (Z3, CVC4,107

SPASS, Vampire, E). Appendix D gives a more thorough introduction to Sledgehammer.108

Sledgehammer + heuristics Occasionally, Sledgehammer may fail without trying simple yet effective109

tactics. As a second, stronger baseline, we create an automated prover that tries 11 common tactics110

(auto, simp, blast, fastforce, force, eval, presburger, sos, arith, linarith,111

auto simp: field simps) for high-school level algebra and number theory problems. If every112

attempted tactic fails, or times out after 10 seconds, it falls back to Sledgehammer.113

Language models for proof search Finally, we include baselines representative of state-of-the-114

art neural theorem proving in Isabelle, specifically Thor (Jiang et al., 2022) and Thor with expert115

iteration on autoformalized data (Wu et al., 2022). GPT-f with expert iteration (Polu et al., 2022) and116

HyperTree Proof Search (HTPS) (Lample et al., 2022) can solve 36.6% and 41.0% of the problems117

1https://artofproblemsolving.com/community

3

https://artofproblemsolving.com/community

Table 1: Proving success rates on the miniF2F dataset with Isabelle In the table are the success rates of four
baselines, the DSP method with human and language model informal proofs, as well as two ablation studies, on
the validation and the test sets of miniF2F. The highest success rates on each set are highlighted in bold. The
performance difference between ablation studies and DSP with human informal proofs are enclosed in brackets.

Success rate miniF2F-valid miniF2F-test

Baselines

Sledgehammer 9.9% 10.4%
Sledgehammer + heuristics 18.0% 20.9%
Thor (Jiang et al., 2022) 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022) 37.3% 35.2%

Draft, Sketch, and Prove

Human informal proof 42.6% 39.3%
Codex informal proof 40.6% 35.3%
8B Minerva informal proof 40.6% 35.3%
62B Minerva informal proof 43.9% 37.7%

on miniF2F-test. However, they are not directly comparable to our method, as they rely on the Lean118

theorem prover, which greatly influences the performance due to the different tactics and automation.119

3.3 Results120

We cover our detailed experimental setup in Appendix E. In Table 1, we display the proportion of121

successful formal proofs found on the miniF2F dataset with the interactive theorem prover Isabelle.122

The results include the four baselines described in Subsection 3.2 and the DSP method with human-123

written proofs and model-generated proofs. From the table, we can see that the automated prover with124

11 additional heuristic tactics significantly increases the performance of Sledgehammer, boosting its125

success rate from 9.9% to 18.0% on the validation set of miniF2F and from 10.4% to 20.9% on the126

test set. The two baselines using language models and proof search (Thor and Thor + expert iteration)127

achieve success rates of 29.9% and 35.2% on the test set of miniF2F, respectively.128

With informal proofs written by humans, the DSP method achieves success rates of 42.6% and129

39.3% on the validation and test sets of miniF2F. A total of 200 out of 488 problems can be proved130

in this way. The Codex model and the Minerva (8B) model give very similar results in solving131

problems on miniF2F: they both guide the automated prover to solve 40.6% and 35.3% of problems132

on the validation and the test sets respectively. This is corroborated by Lewkowycz et al. (2022)’s133

observation that these two models have comparable performances in solving mathematical problems.134

When we switch to the Minerva (62B) model, the success rates rise up to 43.9% and 37.7% re-135

spectively. Compared to human-written informal proofs, its success rates are 1.3% higher on the136

validation set and 1.6% lower on the test set. In total, the Minerva (62B) model is able to solve 199137

problems on miniF2F, one fewer than with human proofs. The DSP method is effective in guiding138

the automated prover under both settings that we study: using either human informal proofs or139

language-model-generated informal proofs. DSP almost doubles the prover’s success rate and results140

in a new state-of-the-art performance on miniF2F with Isabelle. Moreover, the larger Minerva model141

is almost as helpful as a human in guiding the automated prover in solving problems.142

4 Conclusion143

In this paper, we introduced Draft, Sketch, and Prove (DSP), a novel approach that takes advantage144

of informal proofs to synthesize formal proofs. We demonstrated its feasibility and effectiveness145

by reaching state-of-the-art performance on the miniF2F dataset with the Isabelle theorem prover.146

Central to our method are formal proof sketches that mirror the high-level reasoning structures of147

informal proofs. Our ablations showed that the ability to automatically convert informal proofs to148

proof sketches is critical to the success of DSP.149

4

References150

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, and Christian Szegedy. Learning to reason in large151

theories without imitation. CoRR, abs/1905.10501, 2019a. URL http://arxiv.org/abs/152

1905.10501.153

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An154

environment for machine learning of higher order logic theorem proving. In Kamalika Chaudhuri155

and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine156

Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings157

of Machine Learning Research, pp. 454–463. PMLR, 2019b. URL http://proceedings.158

mlr.press/v97/bansal19a.html.159

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Eduardo160

Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq proof161

assistant reference manual: Version 6.1. PhD thesis, Inria, 1997.162

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-163

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-164

wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,165

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,166

Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-167

dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot168

learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,169

and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual170

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,171

2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/172

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.173

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harrison174

Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,175

Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick176

Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,177

Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,178

Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, S. Arun179

Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,180

Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,181

Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating182

large language models trained on code. ArXiv, abs/2107.03374, 2021.183

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam184

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,185

Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam186

Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James187

Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-188

skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin189

Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret190

Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,191

Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-192

ica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,193

Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,194

Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language model-195

ing with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311. URL196

https://doi.org/10.48550/arXiv.2204.02311.197

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin Liu,198

Linda Chen, Sunny Tran, Newman Cheng, et al. A neural network solves, explains, and generates199

university math problems by program synthesis and few-shot learning at human level. Proceedings200

of the National Academy of Sciences, 119(32):e2123433119, 2022.201

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Tactictoe:202

learning to prove with tactics. Journal of Automated Reasoning, 65(2):257–286, 2021.203

5

http://arxiv.org/abs/1905.10501
http://arxiv.org/abs/1905.10501
http://arxiv.org/abs/1905.10501
http://proceedings.mlr.press/v97/bansal19a.html
http://proceedings.mlr.press/v97/bansal19a.html
http://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2204.02311

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact204

co-training for theorem proving with language models. In The Tenth International Conference on205

Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.206

URL https://openreview.net/forum?id=rpxJc9j04U.207

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,208

and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,209

2021.210

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text211

degeneration. arXiv preprint arXiv:1904.09751, 2019.212

Albert Q. Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. LISA: Language models of Isabelle213

proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, 2021.214

Albert Q. Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygózdz, Piotr215

Milos, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language models216

and automated theorem provers. CoRR, abs/2205.10893, 2022. doi: 10.48550/arXiv.2205.10893.217

URL https://doi.org/10.48550/arXiv.2205.10893.218

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International219

Conference on Learning Representations, 2020. URL https://openreview.net/forum?220

id=S1eZYeHFDS.221

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel222

Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem223

proving. CoRR, abs/2205.11491, 2022. doi: 10.48550/arXiv.2205.11491. URL https://doi.224

org/10.48550/arXiv.2205.11491.225

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.226

Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam227

Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with228

language models. CoRR, abs/2206.14858, 2022. doi: 10.48550/arXiv.2206.14858. URL https:229

//doi.org/10.48550/arXiv.2206.14858.230

Norman D. Megill and David A. Wheeler. Metamath: A Computer Language231

for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019.232

http://us.metamath.org/downloads/metamath.pdf.233

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The234

lean theorem prover (system description). In International Conference on Automated Deduction,235

pp. 378–388. Springer, 2015.236

Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow),237

volume 828 of Lecture Notes in Computer Science. Springer, 1994. ISBN 3-540-58244-4. doi:238

10.1007/BFb0030541. URL https://doi.org/10.1007/BFb0030541.239

Lawrence C. Paulson. Three years of experience with sledgehammer, a practical link between240

automatic and interactive theorem provers. In Renate A. Schmidt, Stephan Schulz, and Boris241

Konev (eds.), Proceedings of the 2nd Workshop on Practical Aspects of Automated Reasoning,242

PAAR-2010, Edinburgh, Scotland, UK, July 14, 2010, volume 9 of EPiC Series in Computing, pp.243

1–10. EasyChair, 2010. doi: 10.29007/tnfd. URL https://doi.org/10.29007/tnfd.244

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.245

CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.246

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya247

Sutskever. Formal mathematics statement curriculum learning. CoRR, abs/2202.01344, 2022.248

URL https://arxiv.org/abs/2202.01344.249

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,250

Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement251

learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):252

1140–1144, 2018.253

6

https://openreview.net/forum?id=rpxJc9j04U
https://doi.org/10.48550/arXiv.2205.10893
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.48550/arXiv.2205.11491
https://doi.org/10.48550/arXiv.2205.11491
https://doi.org/10.48550/arXiv.2205.11491
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.1007/BFb0030541
https://doi.org/10.29007/tnfd
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2202.01344

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.254

Advances in neural information processing systems, 27, 2014.255

Donald Syme. DECLARE: A prototype declarative proof system for higher order logic. Citeseer,256

1997.257

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence. In258

Christoph Benzmüller and Bruce R. Miller (eds.), Intelligent Computer Mathematics - 13th Interna-259

tional Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of260

Lecture Notes in Computer Science, pp. 3–20. Springer, 2020. doi: 10.1007/978-3-030-53518-6\ 1.261

URL https://doi.org/10.1007/978-3-030-53518-6_1.262

Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine263

translation in autoformalization of mathematics in mizar. In Jasmin Blanchette and Catalin Hritcu264

(eds.), Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs265

and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pp. 85–98. ACM, 2020. doi:266

10.1145/3372885.3373827. URL https://doi.org/10.1145/3372885.3373827.267

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun Cho.268

Naturalproofs: Mathematical theorem proving in natural language. In Thirty-fifth Conference on269

Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL270

https://openreview.net/forum?id=Jvxa8adr3iY.271

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:272

Grounded mathematical proof generation with language models. CoRR, abs/2205.12910, 2022. doi:273

10.48550/arXiv.2205.12910. URL https://doi.org/10.48550/arXiv.2205.12910.274

Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani275

(eds.), Types for Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy,276

April 30 - May 4, 2003, Revised Selected Papers, volume 3085 of Lecture Notes in Computer277

Science, pp. 378–393. Springer, 2003. doi: 10.1007/978-3-540-24849-1\ 24. URL https:278

//doi.org/10.1007/978-3-540-24849-1_24.279

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Baker Grosse. INT: An inequality benchmark280

for evaluating generalization in theorem proving. In International Conference on Learning281

Representations, 2021. URL https://openreview.net/forum?id=O6LPudowNQm.282

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Christian283

Szegedy. Autoformalization with large language models. CoRR, abs/2205.12615, 2022. doi:284

10.48550/arXiv.2205.12615. URL https://doi.org/10.48550/arXiv.2205.12615.285

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In286

International Conference on Machine Learning (ICML), 2019.287

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: a cross-system benchmark288

for formal olympiad-level mathematics. In The Tenth International Conference on Learning289

Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL290

https://openreview.net/forum?id=9ZPegFuFTFv.291

7

https://doi.org/10.1007/978-3-030-53518-6_1
https://doi.org/10.1145/3372885.3373827
https://openreview.net/forum?id=Jvxa8adr3iY
https://doi.org/10.48550/arXiv.2205.12910
https://doi.org/10.1007/978-3-540-24849-1_24
https://doi.org/10.1007/978-3-540-24849-1_24
https://doi.org/10.1007/978-3-540-24849-1_24
https://openreview.net/forum?id=O6LPudowNQm
https://doi.org/10.48550/arXiv.2205.12615
https://openreview.net/forum?id=9ZPegFuFTFv

Appendix292

A A proof sketch in Isabelle293

Informal Statement: Show that for any real number a, 10a ≤ 28a2 + 1.

Informal Proof:
It suffices to show 0 ≤ 28a2 − 10a + 1. First, consider completing the square for 28a2 − 10a and
observe that

(
a− 5

28

)2
= a2− 10

28
a+(5/28)2. Since 0 ≤

(
a− 5

28

)2, we get 0 ≤ a2− 10
28
a+(5/28)2.

Multiplying by 28 and simplifying gives 0 ≤ 28a2 − 10a + (25/28). Since 25/28 < 1, the result
follows.

Formal Proof Sketch:
theorem algebra_binomnegdiscrineq_10alt28asqp1:
fixes a :: real
shows "10 * a ≤ 28 * â 2 + 1"

proof - (* it suffices to show 0 <= 28â 2 - 10a + 1 *)
have c0: "0 ≤ 28â 2 - 10a + 1"
proof - (* observe that (a - (5/28))ˆ2 = â 2 - (10/28)a + (5/28)ˆ2 *)
have c1: "(a - (5/28))̂ 2 = â 2 - 10/28a + (5/28)ˆ2" < · · · >
(* we get 0 <= â 2 - (10/28)a + (5/28)ˆ2 *)
have c2: "0 ≤ â 2 - 10/28a + (5/28)ˆ2" using c1 < · · · >
(* Multiplying by 28 and simplifying gives 0 <= 28â 2 - 10a + (25/28) *)
have c3: "0 ≤ 28â 2 - 10a + 28((5/28)̂ 2)" using c2 < · · · >
have c4: "0 ≤ 28â 2 - 10a + 28((5/28)*(5/28))" using c3 < · · · >
have c5: "0 ≤ 28â 2 - 10a + (25/28)" using c4 < · · · >
(* Since 25/28 < 1, the result follows. *)
show ?thesis using c5 < · · · >

qed
show ?thesis < · · · >

qed

Figure 2: A proof sketch in Isabelle. The problem “Show that for any real number a, 10a ≤ 28a2 + 1”
is given with an informal proof and an associated formal proof sketch. The sketch first rewrites the original
statement (c0), which is proved through 5 intermediary conjectures (c1..c5). We use a special token (< · · · >)
to indicate that the conjecture is “open” and should be tackled by an automated prover later. To facilitate the
alignment between the informal and formal languages, we annotate the formal proof sketch examples with
informal proof segments (shown in red), which are immediately followed by their formal counterparts.

B Background and Related Work294

Interactive theorem proving Modern verification systems for mathematics are centered around295

interactive theorem provers (ITPs), such as Isabelle (Paulson, 1994), Lean (Moura et al., 2015),296

Coq (Barras et al., 1997), or Metamath (Megill & Wheeler, 2019). ITPs embed the mathematical297

definitions and theorems onto a solid logical foundation (e.g., Higher-Order Logic, Dependent Type298

Theory) implemented by their kernels. Every theorem must be checked by the kernel to be recognized299

by the ITP. To be proved formally, a theorem is first stated in the ITP’s programming language, and300

iteratively simplified into simpler objectives (or subgoals), until it can be reduced to already proven301

facts. In this paper, we will refer to proofs verified by a formal theorem prover as formal proofs, and302

proofs written in “standard” mathematics (e.g. in LATEX) as informal proofs.303

Machine learning for formal proof synthesis Several approaches propose to combine machine304

learning with modern interactive theorem provers (Yang & Deng, 2019; Gauthier et al., 2021), and305

build upon the recent success of language models (Polu & Sutskever, 2020; Han et al., 2022; Polu306

et al., 2022; Jiang et al., 2022; Lample et al., 2022). These methods typically rely on sequence-to-307

sequence models (Sutskever et al., 2014) to generate the next step (or tactic) of a proof given the308

current proof state and perform search over the generated subgoals using powerful search methods309

8

such as MCTS (Silver et al., 2018). Because search is computationally expensive, these language310

models are relatively small (with fewer than 1 billion parameters). Our method contrasts with these311

approaches in that we use a significantly reduced number of calls to the models, but also much larger312

language models (with up to 175 billion parameters) that showcase outstanding few-shot learning313

abilities (Brown et al., 2020).314

Machine learning for informal reasoning Language models have also been used in the context315

of purely informal mathematics (Lample & Charton, 2020; Hendrycks et al., 2021; Welleck et al.,316

2021; Drori et al., 2022; Welleck et al., 2022). Nevertheless, Lewkowycz et al. (2022) note that for317

quantitative question answering, models are prone to generate false positives: the model guesses318

the right answer while providing an incorrect proof. These errors are hard to spot without human319

inspection. Worryingly, the frequency of false positives increases with the difficulty of the problem.320

Our method builds on these findings and translates informal proofs into formal proofs. Since ITPs321

are logically grounded, once a formal proof is checked by them, we are guaranteed its correctness.322

Autoformalization In a position paper, Szegedy (2020) argued for attaining formal mathematical323

data from informal sources with neural networks. Wang et al. (2020) performed preliminary exper-324

iments where the evaluation was limited to text-level similarities on synthetic datasets. Recently,325

Wu et al. (2022) found that large language models (Chen et al., 2021; Chowdhery et al., 2022) are326

capable of few-shot statement autoformalization. Namely, a small number of examples is enough to327

learn to perform informal-to-formal translation of statements. In this paper, we investigate whether328

these findings can generalize to proof autoformalization, i.e., whether large language models can be329

used to translate informal proofs into formal ones.330

C Conjectures and the declarative proof style331

Interactive theorem provers such as Isabelle and Mizar use a declarative proof style (Syme, 1997), in332

which a proof is interleaved with conjectures and their corresponding proofs. Syme (1997) stated333

that the list of conjectures in a declarative proof should be analogous to a proof sketch found in a334

mathematical textbook and sufficiently convincing for the reader. In practice, ITP users often prove a335

theorem by writing down a list of conjectures (a “formal sketch”), then attempt to find a proof of336

each conjecture (fill a “gap”) with an automated system.337

D Sledgehammer338

Sledgehammer (Paulson, 2010) is a powerful system that automates reasoning with the interactive339

theorem prover Isabelle. It works by flattening the goals encoded in the higher-order logic used by340

Isabelle/HOL into other logics (e.g., first-order logic) which can then be fed into automated theorem341

provers such as E 2, CVC4 3, Z3 4, Vampire 5, and SPASS 6. If any of these automated theorem342

provers succeeds in finding the proof in their own corresponding format, Sledgehammer reconstructs343

the proof in Isabelle/HOL with certified provers (metis, meson, and smt), which is relatively344

more interpretable by humans.345

As a practical example of using Sledgehammer, one can declare a conjecture in Isabelle/HOL:346

have "4 dvd (a::nat) =⇒ 2 dvd a" and call Sledgehammer immediately afterwards.347

If Sledgehammer succeeds, it will return a proof step that proves the conjecture. In this example,348

the step is by (meson dvd trans even numeral), which uses the meson resolution prover349

and two facts: that the division relation is transitive and that 4 is an even number. If Sledgehammer350

does not find the proof or timeouts, it will report failure.351

2https://wwwlehre.dhbw-stuttgart.de/ sschulz/E/E.html
3https://cvc4.github.io/index.html
4https://github.com/Z3Prover/z3
5https://vprover.github.io/
6https://www.spass-prover.org/download/index.html

9

https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://cvc4.github.io/index.html
https://github.com/Z3Prover/z3
https://vprover.github.io/
https://www.spass-prover.org/download/index.html

E Experimental Setup352

Drafting When informal proofs are generated, we condition a large language model on informal353

statements to sample 100 informal proofs per problem. Specifically, we use the Codex code-danvici-354

002 model (Chen et al., 2021) through the OpenAI API, and the 8B and the 62B versions of the355

Minerva model from Lewkowycz et al. (2022). We use greedy decoding for Codex and nucleus356

sampling (Holtzman et al., 2019) with temperature T = 0.6 and top p = 0.95 for Minerva models.357

Sketching For sketching, we manually prepare 20 autoformalization examples of the format (informal358

statement, informal proof, formal statement, formal sketch), to form a pool of high-quality demon-359

strations. Of these 20 examples, 10 are of the algebra type and 10 are of the number theory type. All360

examples are from the validation set of the miniF2F dataset and can be found in the supplementary361

materials. The sketches contain in-line comments as in Figure 2. If the name of the problem gives362

away its type (algebra or number theory), we only use examples of the corresponding type. We also363

ensure that the sampled few-shot examples do not contain the problem being solved. The prompt364

is composed of 3 uniformly randomly sampled example from the pool and the current problem’s365

(informal statement, informal proof, formal statement). We use this prompt to query the same Codex366

model to get the desired proof sketches. We use greedy decoding and a maximum of 2048 tokens367

in the generated sequence. For all the experiments, we control the total number of queries made to368

Codex per problem to be 100. This means 100 queries per human informal solution and one query369

per language-model-generated solution .370

Proving To prove the conjectures left open by the formal sketch, we use the Sledgehammer +371

heuristics automated prover described in Subsection 3.2. We execute the automated prover on every372

open conjecture in the sketch to synthesize a formal proof that can be verified by Isabelle.373

F Analysis374

F.1 Ablation studies375

Ablation of in-line comments To facilitate the alignment between the informal proofs and the376

formal proof sketches, we copy relevant segments of the informal proofs as in-line comments in377

the sketches. In the manually constructed prompt examples, these comments are prefixed to the378

corresponding Isabelle code blocks, as shown in Figure 2 (the text in red). We hypothesize that this379

technique is beneficial for large language models to synthesize formal sketches. To validate this380

hypothesis, we perform an ablation study by removing the in-line comments in the prompt examples381

before running the experiment. The results are displayed in Table 1. We find that without in-line382

comments, the success rates drop by 4.9% and 2.8% on the validation and test sets respectively. We383

conclude that having in-line comments is helpful for generating formal proof sketches.384

Ablation of sketching Having formal proof sketches as an intermediate data mode that are later385

completed by automated provers is central to our method. To study the effect of this critical component,386

we conduct an experiment without the sketching operation. Namely, we replace the formal proof387

sketches with complete formal proofs in the prompt examples. As a result, the large language model388

will also generate formal proofs instead of sketches. We directly verify whether these generated proofs389

are valid. The results in this setup are presented in Table 1. The results reveal that without sketching,390

the success rate on miniF2F decreases by 9.8% and 9.0% on the validation and test sets respectively.391

The drastic performance difference indicates the essential role of proof sketches in our approach.392

Scaling properties of ablation studies To understand the effect of the ablations on the DSP393

method’s scaling properties, we vary the number of autoformalization attempts per problem and plot394

the number of successful proofs found on the miniF2F dataset in Figure 3 (left). Three methods are395

contrasted: the original DSP method with human informal proofs, the DSP method without in-line396

comments, and the DSP method without sketching. It can be seen from the figure that with the original397

DSP method, the performance reaches a plateau (no new proofs are found) after 70 autoformalization398

attempts are made for each problem. For the ablation study with no in-line comments, the plateau is399

reached much faster, after around 50 autoformalization attempts. This method solves 181 problems in400

total. The ablation study without sketching can solve 154 problems on miniF2F. In comparison, with401

human informal proofs, only 7 autoformalization attempts are required to reach this performance.402

10

0 20 40 60 80 100
#Autoformalization Attempts Per Problem

50

100

150

200

#S
uc

ce
ss

fu
l P

ro
of

s

MiniF2F Problems Solved (out of 488)

DSP with human proofs
Ablation: no in-line comments
Ablation: no sketching

0 20 40 60 80 100
#Autoformalization Attempts Per Problem

50

100

150

200

#S
uc

ce
ss

fu
l P

ro
of

s

MiniF2F Problems Solved (out of 488)

Human informal proof drafts
Minerva (62B) proof drafts
Minerva (8B) proof drafts
Codex proof drafts

Figure 3: Number of problems solved on miniF2F against the number of autoformalization attempts per
problem Left: The figure displays the experiments carried out with the full human informal proofs. The curves
represent the full DSP method (blue), formal proof sketches without the in-line comments (orange), and without
the formal proof sketches (green). Right: This figure compares the experimental results with informal proof
drafts written by humans (blue), the 62B Minerva model (red), the 8B Minerva model (brown), and the Codex
model (pink).

F.2 Language-model-generated proofs403

Our experiments demonstrated that model-generated informal proofs from Minerva and Codex can404

help guide a formal theorem prover. In this section, we analyze the properties of these proofs further.405

Since the Minerva (62B) model gives the best overall performance on miniF2F, we focus on the406

informal proofs it produces in this section.407

Minerva helps solve one IMO problem Interestingly, our approach manages to solve one problem408

from the International Mathematical Olympiad (imo 1959 1) with a Minerva-generated solution,409

but not with the human proof. For this problem, we present the successful Minerva-generated410

informal proof draft and the formal proof in Figure 4. We hypothesize that the reason behind this411

phenomenon is that human proofs might leave gaps between conjectures that are too difficult for412

automated provers to solve. On the other hand, the diversity in language model informal proofs413

makes some of them more amenable to automated provers. In Appendix G, we analyze the human414

and the Minerva informal proofs for this problem in greater detail.415

Manual evaluation of Minerva proofs Next, we analyze the relationship between the validity of416

the formal proofs and the correctness of the informal proofs. For our analysis, we randomly sample417

50 Minerva proofs of different problems, which are then successfully converted to formal proofs. We418

then manually evaluate the correctness of these 50 informal proofs. Among them, 29 proofs (58%)419

are entirely correct, 16 are incorrect with a clearly identifiable incorrect step, and 5 “proofs” are420

nonsensical and simply rephrase the final conclusions of the problems.421

Seeing that a total of 16 + 5 = 21 incorrect informal proofs can lead to successful formal proofs,422

we study how they guide the automated formal prover despite having flaws themselves. The 21423

proofs divide into 2 cases: In the first case, we find 13 problems for which the informal proofs are424

mostly ignored, and the automated prover can find proofs by itself; In the other 8 problems, although425

the informal proofs are wrong, the autoformalizer manages to correct them, either by ignoring the426

erroneous steps or by stating their correct versions in the formal proof sketches. This suggests427

that the autoformalizer has some understanding of the mathematical statements and is not merely428

translating them from an informal language to a formal language. It is robust to slight noises in its429

input. In Appendix H, we present 3 case studies comparing the human and Minerva informal proofs.430

Particularly, Figure 7 shows a completely correct example and one example of each pathological case.431

Is there a way to detect which Minerva proofs are correct, without human evaluation? For a432

preliminary investigation, we filter out all the problems that can be solved directly with the automated433

prover from the 50 and are left with 27 informal proofs. Of these 27, 21 are completely correct, 6434

still contain small errors, but none are nonsensical. With this simple filter, we achieve a precision of435

77.8% and a recall of 72.4% in identifying correct Minerva informal proofs.436

11

Scaling properties of human and Minerva proofs To understand the influence of different437

informal proof sources on the scaling properties of DSP, we plot the number of successful proofs found438

on miniF2F against the number of autoformalization attempts per problem in Figure 3 (right). Note439

that for each problem, we have 1 informal proof by a human and 100 informal proof drafts by each440

language model. The one human proof is used 100 times for formal proof sketch generation, while441

each language model proof draft is used only once. We notice that the 62B Minerva model results442

in more successful proofs than the smaller (8B) Minerva model and the Codex model consistently443

for any number of attempts. The 8B Minerva model and the Codex model behave similarly, both444

finding 185 proofs. Human informal proofs yield better results than Minerva (62B) for 1 − 100445

autoformalization attempts. However, the difference is small (1 problem) when 100 are made.446

G A proof to an international mathematical olympiad problem447

With the Minerva-generated solutions, a proof to the problem imo 1959 p1 is discovered. This is448

the first problem of the first ever International Mathematical Olympiad (IMO). The informal problem449

statement, Minerva-generated informal solution, and DSP’s formal proof are shown in Figure 4.450

In Figure 4, we can see that the autoformalizer in DSP (a large language model), copies over parts of451

the informal proof generated by Minerva as in-line comments to precede their corresponding formal452

proof blocks. The formal proof does not use the first sentence of the informal proof solution as it453

is already identical to the formal statement. We also notice that the large language model selects454

relevant premises after writing down the conjectures (the steps starting with using) despite not455

every premise is strictly needed.456

The formal proof creates 5 conjectures (4 have statements and 1 show statement) which are all457

subsequently proved by our automated theorem prover. The step to prove the statement have "gcd458

(21*n + 4) (14*n + 3) = 1" involves 2 verified low-level provers smt and z3 and 10459

lemmas/facts from outside the scope of the language model. It is highly unlikely that either the large460

language model or the automated theorem prover can finish this proof on its own.461

Unsuccessful human-written proof. In contrast, the human-written informal proof of this IMO462

problem did not lead to a successful formal proof. The human-written proof is:463

Denoting the greatest common divisor of a, b as (a, b), we use the Euclidean algorithm:464

(21n+ 4, 14n+ 3) = (7n+ 1, 14n+ 3) = (7n+ 1, 1) = 1

It follows that 21n+4
14n+3 is irreducible. Q.E.D.465

A key difference between the Minerva proof and the human proof is the way that invoking the466

Euclidean algorithm is described. The Minerva proof explicitly writes out the results of the Euclidean467

algorithm (e.g. 21n + 4 = 1 · (14n + 3) + 7n + 1), which are translated into the sketch (c1 in468

Figure 4). The human proof introduces new notation to express the results indirectly in terms of469

greatest common divisors, which ends up being less suitable for sketching. For example, below is470

a sketch generated with the human proof, which has a conjecture that is semantically incorrect and471

hence cannot be closed by the automated prover:472

theorem473

fixes n :: nat474

shows "gcd (21*n + 4) (14*n + 3) = 1"475

proof -476

have "(21*n + 4, 14*n + 3) = (7*n + 1, 14*n + 3)"477

ATP (* <--- UNSUCCESSFUL *)478

also have "... = (7*n + 1, 1)"479

ATP480

finally show ?thesis481

ATP482

qed483

H More case analyses of human and Minerva informal proofs484

12

Statement: Prove that the fraction 21n+4
14n+3

is irreducible for every natural number n.

Informal Proof (Minerva 62B):
We must show that gcd(21n+ 4, 14n+ 3) = 1.
The Euclidean algorithm gives

21n+ 4 = 1 · (14n+ 3) + 7n+ 1

14n+ 3 = 2 · (7n+ 1) + 1.

Since gcd(7n+ 1, 1) = 1, we have gcd(21n+ 4, 14n+ 3) = 1.

Formal Proof:
theorem imo_1959_p1:
fixes n :: nat
shows "gcd (21*n + 4) (14*n + 3) = 1"

proof -
(* The Euclidean algorithm gives
21n+4=1\cdot(14n+3)+7n+1
14n+3=2\cdot(7n+1)+1. *)
have c0: "21*n + 4 = 1*(14*n + 3) + 7*n + 1"
by auto [ATP]

have c1: "14*n + 3 = 2*(7*n + 1) + 1" using c0
by auto [ATP]

(* Since \gcd(7n+1,1)=1, we have \gcd(21n+4,14n+3)=1. *)
then have "gcd (7*n + 1) 1 = 1"
using c1
by auto [ATP]

then have "gcd (21*n + 4) (14*n + 3) = 1"
using c1
by (smt (z3) BitM_plus_one ab_semigroup_add_class.add_ac(1)
add.assoc c0 gcd.commute gcd_add2 gcd_add_mult mult_numeral_1
numeral_One numeral_eq_Suc numerals(1) semiring_norm(3)) [ATP]

then
show ?thesis
using c1
by blast [ATP]

qed

Figure 4: IMO proof guided by a Minerva informal proof An informal proof of the International
Math Olympiad problem imo 1959 p1 generated by Minerva that led to a successful formal proof.
The steps suffixed by a [ATP] identifier are generated by an automated theorem prover and the rest
are by the DSP autoformalizer.

13

Statement: Given that f + 3z = 11 and 3(f − 1)− 5z = −68, show that f = −10 and z = 7.

Informal Proof (Minerva 62B):
We can solve for f in the first equation, obtaining f = 11− 3z.
Then we can substitute this expression for f into the second equation,
obtaining 3(11− 3z − 1)− 5z = −68.
Solving for z, we obtain z = 7.
Then, we can substitute this value of z into the expression for f , obtaining f = 11− 3 · 7 = −10.

Formal Proof:
theorem algebra_2varlineareq_fp3zeq11_3tfm1m5zeqn68_feqn10_zeq7:
fixes f z::complex
assumes h0: "f + 3*z = 11"

and h1: "3*(f - 1) - 5*z = -68"
shows "f = -10 \<and> z = 7"

proof -
(* We can solve for f in the first equation, obtaining f = 11 - 3z. *)
have c0: "f = 11 - 3*z"
using h0
by (auto simp: field_simps) [ATP]

(* Then we can substitute this expression for f into the second equation,
obtaining 3(11 - 3z - 1) - 5z = -68. *)

have c1: "3*(11 - 3*z - 1) - 5*z = -68"
using h1 c0
by auto [ATP]

(* Solving for z, we obtain z = 7. *)
have c2: "z = 7"
using c1
by auto [ATP]

(* Then, we can substitute this value of z into the expression for f,
obtaining f = 11 - 3 \cdot 7 = -10.*)

have "f = 11 - 3*7"
using c0 c2
by auto [ATP]

then have c3: "f = -10"
by auto [ATP]

show ?thesis
using c2 c3
by auto [ATP]

qed

Figure 5: Algebra example with Minerva informal proof. An informal proof generated by Minerva
that led to a successful formal proof. The autoformalizer generated a proof sketch containing all lines
of the formal proof except for those with [ATP]. The sketch is structured according to the informal
proof, containing five intermediate conjectures based on the informal proof. The autoformalizer
generated in-line comments in the proof sketch (shown in red), which correctly identified an alignment
between the formal and informal proofs.

14

Statement: For any integer a, show that a2 ≡
0 (mod 4) or a2 ≡ 1 (mod 4).

Informal Proof (Minerva 62B):
Let a = 2k for some integer k.
Then a2 = 4k2.
Since 4k2 is divisible by 4, we have a2 ≡ 0
(mod 4).
Now, let a = 2k + 1 for some integer k.
Then a2 = 4k2 + 4k + 1 = 4(k2 + k) + 1.
Since k2 + k is an integer, 4(k2 + k) + 1 is
not divisible by 4.
Thus, a2 ≡ 1 (mod 4).

Formal Proof:
theorem numbertheory_sqmod4in01d:
fixes a :: int
shows "(â 2 mod 4 = 0)
\<or> (â 2 mod 4 = 1)"

proof (cases "even a")
case True
(* Let a=2k for some integer k.

Then â 2=4k̂ 2.
Since 4k̂ 2 is divisible by 4,
we have â 2 \equiv 0 \pmod{4}.*)

then obtain k where "a=2*k"
using evenE
by auto [ATP]

then have "â 2 = 4*k̂ 2"
unfolding power2_eq_square
by auto [ATP]

then have "â 2 mod 4 = 0"
by auto [ATP]

then show ?thesis
by auto [ATP]

next
case False
(* Now, let a=2k+1 for some integer k.

Then â 2=4k̂ 2+4k+1=4(k̂ 2+k)+1.
Since k̂ 2+k is an integer,
4(k̂ 2+k)+1 is not divisible by 4.
Thus, â 2 \equiv 1 \pmod{4}.*)

then obtain k where "a=2*k+1"
using oddE by auto [ATP]
then have "â 2 = 4*k̂ 2+4*k+1"
unfolding power2_eq_square
by (auto simp: field_simps) [ATP]
then have "â 2 mod 4 = 1"
by presburger [ATP]
then show ?thesis
by auto [ATP]

qed

Statement: For any integer a, show that a2 ≡
0 (mod 4) or a2 ≡ 1 (mod 4).

Informal Proof (Minerva 62B):
a (mod 4) ∈ {0, 1, 2, 3}.
Using that for any natural number k, a ≡ b
(mod 4) implies ak ≡ bk (mod 4), we have
a2 (mod 4) ∈ {0, 1, 4, 9}.
Since 4 ≡ 0 (mod 4) and 9 ≡ 1 (mod 4),
the result follows.

Formal Proof:
theorem numbertheory_sqmod4in01d:
fixes a :: int
shows "(â 2 mod 4 = 0)
\<or> (â 2 mod 4 = 1)"

proof -
(* a \pmod 4 \in {0, 1, 2, 3}. *)
have c0: "a mod 4 \<in> {0, 1, 2, 3}"
by auto [ATP]

(* Using that for any natural number k,
a \equiv b \pmod 4 implies
â k \equiv b̂ k \pmod 4,*)

have "â 2 mod 4 = (a mod 4)\< ŝup>
2 mod 4"

by (smt (z3) numeral_eq_Suc power_mod)
[ATP]

(* we have
â 2 \pmod 4 \in {0, 1, 4, 9}. *)

also have "... \<in> {0, 1, 4, 9}"
using c0
by auto [ATP]

(* Since 4 \equiv 0 \pmod 4 and
9 \equiv 1 \pmod 4,
the result follows. *)

finally show ?thesis
by auto [ATP]

qed

Figure 6: Alternative proofs: Minerva (left) and human-written (right). In both proofs, the formal
sketch is structured based on the informal proof. The Minerva informal proof and its sketch break the
proof into even and odd cases. These cases are not explicitly stated in the informal proof, and the
formal sketch makes them explicit (cases “even a”). Each case has three conjectures that are directly
based on the informal proof. The sketch excludes parts that are not needed in the formal proof, for
instance “Since k2 + k is an integer, 4(k2 + k) + 1 is not divisible by 4”. The human proof uses a
different strategy than the Minerva proof, based on the facts that a (mod 4) ∈ {0, 1, 2, 3} and a2

(mod 4) ∈ {0, 1, 4, 9}. The sketch uses these as conjectures, synthesizes an intermediate step not in
the informal proof, and excludes the last step of the informal proof.

15

Statement: For each plumbing repair job, Mr.
Wrench charges N dollars for coming out to
the house plus x dollars per hour that he works
at the house. He charged $97 for a one-hour
repair job and $265 for a five-hour repair job.
What is his charge for a two-hour repair job?
Show that it is $139.

Informal Proof (Minerva 62B):
Let N be the number of dollars charged for
coming out to the house and let x be the num-
ber of dollars per hour that Mr. Wrench works.
For the one-hour repair job, we have that the
total cost is N + x = 97.
For the five-hour repair job, we have that the
total cost is N + 5x = 265.
We subtract the first equation from the second
equation to obtain 4x = 168 ⇒ x = 42.
Plugging this back into the first equation, we
obtain that N = 55.
Therefore, for a two-hour repair job, the total
cost is 55 + 2x = 55 + 2(42) = $139 .

Formal Proof:
theorem mathd_algebra_160:
fixes n x ::real
assumes "n + x = 97"
and "n + 5 * x = 265"
shows "n + 2 * x = 139"

proof -
(* We subtract the first equation
from the second equation to obtain
4x = 168 ⇒ x = 42. *)
have "4 * x = 168"
using assms by auto [ATP]
then have "x = 42"
by auto [ATP]
(* Plugging this back into
the first equation, we obtain that
N = 55. *)
then have "n = 55"
using assms by auto [ATP]
(* Therefore, for a two-hour repair
job, the total cost is
55+ 2x = 55+ 2(42) = $139. *)
then show ?thesis
by (smt (z3) ⟨x = 42⟩) [ATP]

qed

Statement: Show that for any real number x
and any natural number n, if x > −1, then
(1 + nx) ≤ (1 + x)n.

Informal Proof (Minerva 62B):
This is true for n = 1. Now, suppose that this
is true for n.
Then we have that

(1 + nx)n = 1 + n2x+ n3x2 + · · ·+ nxn

≤ 1 + nx+ n2x2 + · · ·+ nxn = (1 + x)n

and

(1 + nx)n+1 = (1 + nx)n(1 + nx)

≤ (1 + x)n(1 + x) = (1 + x)n+1.

Therefore, this is true for n+ 1.

Formal Proof:
theorem induction_1pxpownlt1pnx:
fixes x :: real and n :: nat
assumes "-1 < x"
shows "(1 + n*x) \<le> (1 + x) n̂"

proof (induct n)
case 0
then show ?case
by auto [ATP]
next case (Suc n)
then show ?case
by (smt (z3) Bernoulli_inequality assms)
[ATP]
qed

Statement: Determine the remainder of 1529
(mod 6). Show that it is 5.

Informal Proof (Minerva 62B):
By definition, 1529 ≡ 5 (mod 6).

Formal Proof:
theorem mathd_numbertheory_551 :
"1529 mod 6 = (5::nat)"

by auto [ATP]

Figure 7: Three Types of Minerva proofs: correct proof (left), incorrect proof (right top),
nonsensical proof (right bottom) In the correct Minerva proof, the formal sketch is structured based
on the informal proof and steps are well-aligned. In the incorrect Minerva proof, the step ”This is
true for n = 1” is corrected by Codex in the formal sketch to ”case 0” which starts the base case with
n = 0 since natural numbers include 0. This is an explicit correction made by Codex and makes a
slightly incorrect Minerva proof formalized successfully. Lastly, the meaningless proof contains only
a single statement without any calculation or justification. However, Codex also chooses to directly
show the statement without any calculation. This suggests that the problem itself could be considered
simple by Codex.

16

	Introduction
	Method
	Drafting informal proofs
	Mapping informal proofs into formal sketches
	Proving open conjectures in the sketches

	Experiments
	Dataset and evaluation
	Baselines
	Results

	Conclusion
	A proof sketch in Isabelle
	Background and Related Work
	Conjectures and the declarative proof style
	Sledgehammer
	Experimental Setup
	Analysis
	Ablation studies
	Language-model-generated proofs

	A proof to an international mathematical olympiad problem
	More case analyses of human and Minerva informal proofs

