
Estimating Numbers without Regression

Abstract

Despite recent successes in language models, their ability to represent numbers is
insufficient. Humans conceptualize numbers based on their magnitudes, effectively
projecting them on a number line; whereas subword tokenization fails to explicitly
capture magnitude by splitting numbers into arbitrary chunks. To alleviate this
shortcoming, alternative approaches have been proposed that modify numbers at
various stages of the language modeling pipeline. These methods change either
the (1) notation in which numbers are written (e.g. scientific vs decimal), the (2)
vocabulary used to represent numbers or the entire (3) architecture of the underlying
language model, to directly regress to a desired number.
In this work, we show that a potential trade-off to the more complex architectural
changes is to simply change the model’s vocabulary instead, e.g. introduce a new
token for numbers in range 10-100. In the context of masked number prediction,
we find that a carefully designed tokenization scheme is both the simplest to imple-
ment and sufficient i.e. with similar performance to the state-of-the-art approach
that requires making significant architectural changes. Finally, we evaluate the
various number representation schemes on the downstream task of numerical fact
estimation (for Fermi Problems) in a zero-shot setting and find similar trends
i.e. changes at the tokenization level achieve near state-of-the-art results while
requiring minimal resources compared to other number representation schemes.

1 Introduction

The standard practice in the natural language processing (NLP) community is to process numbers
in exactly the same manner as words. This counter-intuitive treatment of numbers leads to their
inaccurate representation and therefore, limited numerical understanding of large-scale language
models (LMs) (Razeghi et al., 2022). To illustrate, a number like $799 is subword tokenized
(Sennrich et al., 2016) as 79 and ##9. Such a tokenization method, by construction, prevents
accurately modeling the relationship of this number with others close on the number line say, $800,
as the surface forms share no common tokens.

Many alternatives have been proposed to capture the scalar magnitude of numbers (Thawani et al.,
2021b). All number decoders proposed to capture the magnitude of numbers fall into one of the
following categories, corresponding to changes in 1) notation (e.g. scientific vs decimal) or 2)
vocabulary (e.g. introducing new tokens that denote all numbers within a specified range) or 3)
architectural changes (e.g. directly regressing to a number). Figure 1 shows various alternative
number representation methods ordered by increasing levels of intervention on a typical NLP pipeline.

We find that applying the vocabulary-level changes leads to near state-of-the-art performance requiring
no additional pre-training or architectural changes. This is a surprising yet useful finding, which can
substantially speed up adoption of numeracy into any given language model. Any arbitrary LM can
be made numerate by simply tokenizing numbers on the number line.

We further evaluate the number representation schemes on their ability to generalize to downstream
tasks – in this case, numerical fact estimation in the context of solving Fermi problems (Kalyan et al.,
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Figure 1: Alternative number representations change one of the three stages in the NLP pipeline.

2021). We find trends similar to the task of masked number prediction demonstrating the utility of
the simple yet effective tokenization scheme in the decoding setting.

2 Background
Mathematics includes not only performing exact arithmetic over operands, but also a comprehensive
understanding of approximate numeracy. This paper focuses on the latter, with the setting of masked
number prediction (MNP) in natural language. In this section, we introduce existing classes of
number decoders and discuss the trade-offs involved in using them.

Subword. The default way that language models decode numbers is the same way as words, one
subword at a time, e.g. , the number 600 could be decoded as two individual tokens 6 and ##00.

Notation-change. Here, the numbers are represented in an alternative notation by preprocessing
text before feeding into any off-the-shelf tokenizer and model. We consider the following variations:
1. Scientific: Using scientific notation, e.g., 6e2 (where 6 is the mantissa and 2 is the exponent) in
lieu of the usual decimal notation was first proposed by Zhang et al. (2020). In this work, we closely
follow their version with minor implementation level changes. Note that following the notation
change, the tokenizer nevertheless splits it into subwords. 2. Digits: Here, the number is split
into its constituent digits or characters, e.g., 600 becomes 6 0 0. This approach offers a consistent
decomposition of numbers into digits as opposed to arbitrary subword segmentation, and has been
proven effective on simple numeric probes as well as arithmetic word problems Geva et al. (2020).

Vocabulary change. Unlike words, the notion of distance or similarity is more obviously defined
for numbers in terms of their separation on the number line, a cognitive tool that human beings are
known to intuitively use to process numeracy (Dehaene, 2011). This forms the basis of a change
of vocabulary: numbers within a specified range are collapsed into a single token (e.g. 100-1000) –
at the cost of precise representation of numbers. While this approach has already been used in the
context of encoding numbers (Berg-Kirkpatrick and Spokoyny, 2020; Thawani et al., 2021a), our
work is the first to use and study this approach when outputting or decoding numbers. This approach
does not modify the LM architecture, instead merely adds new tokens to the vocabulary.

Architecture change. Finally, several recent methods have modified the underlying language model
to emit continuous values when predicting numbers. At their core, they operate by regressing to the
desired number conditioned on the language context. See Berg-Kirkpatrick and Spokoyny (2020)
for a thorough comparison within this class of methods. We directly compare against their best
variant: Discrete Latent Exponents (DExp), which first models the exponent part of a number as a
multinomial, then uses it to parameterize a truncated log normal distribution to sample the mantissa,
a continuous value. Note that this is the highest level of intervention possible, thereby making the
method ineffective whenever the underlying LM architecture is not accessible, say over an API.

3 Experimental setup
We evaluate different number decoders on the task of masked number prediction (MNP): Given a
sentence with a masked number (e.g. “Tigers weigh [MASK] lbs."), the model must predict a number
as close as possible to the ground truth (e.g. 600). Before analyzing the performance of different
models, we first describe the datasets, metrics, baselines, and models used.

Datasets: We follow Berg-Kirkpatrick and Spokoyny (2020) to finetune and evaluate our models on
three datasets – Financial News Articles (FinNews), its subset containing mostly price-based numbers
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FinNews FinNews-$ SciDocs
Metrics E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Baselines
Train-Mean 1.0± 0.1% 7.69 6.0± 0.4% 4.68 0.0± 0.0% 8.81
Train-Median 5.5± 0.2% 1.88 10.6± 0.5% 2.66 49.5± 0.7% 0.83
Train-Mode 24.2± 0.4% 2.02 8.1± 0.5% 6.30 49.5± 0.7% 1.00

Subword-Pad8 63.6± 0.5% 0.68 29.1± 0.8% 1.36 68.0± 0.6% 0.68

Notation-change
Digit-Pad17 52.2± 0.5% 0.93 33.0± 0.8% 1.37 55.1± 0.5% 0.91
Scientific-Pad8 52.5± 0.5% 0.84 NA NA 71.1± 0.6% 0.66

Vocabulary-change
Vocab-AM 74.4± 0.4% 0.65 57.1± 0.8% 0.93 81.2± 0.5% 0.51
Vocab-GM 73.7± 0.4% 0.60 57.0± 0.8% 0.92 81.3± 0.5% 0.44

Architecture-change Berg-Kirkpatrick and Spokoyny (2020)
DExp 74.6± 0.4% 0.50 57.5± 0.8% 0.89 81.2± 0.5% 0.39

Table 1: Order of magnitude accuracy (E-Acc) and Log Mean Absolute Error (LogMAE) on test sets.

(FinNews-$), and Scientific Articles (SciDocs) (Lo et al., 2020); all numbers in these datasets lie
between 1-1016. All datasets are accessible (MIT License) at https://github.com/dspoka/mnm.

Metrics: We evaluate using two metrics – a) Exponent Accuracy (E-Acc) that checks whether the
predicted answer is of the same order of magnitude as the ground truth and b) Log Mean Absolute
Error (LogMAE). Confidence Intervals for Exponent Accuracy, a classification metric, are reported
as the Wilson Score Interval (Wilson, 1927): a± z

√
a(1− a)/n, where a is the accuracy, z is the

constant (equal 2.58 for 99% CI), and n is the number of observations in the respective test set.

Baselines: Our primary baseline is the standard approach of subword tokenization. We require
each number prediction to be 8 tokens long, with appropriate padding, to be able to fairly represent
all numbers in our range. Additionally, we evaluate on three trivial baselines that make a constant
prediction corresponding to the mean, median, and mode of all numbers in the training set.

Models: We compare against both notation-level changes i.e. scientific and digit, with a padding
of 8 and 17 respectively. Among the approaches that introduce architectural changes, we compare
against the SotA method of DExp (see previous section). Finally, we compare against two variations
that introduce vocabulary level changes – both discretize the number line with logarithmically sized
bins (with base 10). The two variants differ in how the mantissa is chosen – the arithmetic mean (5)
or the geometric mean (

√
10), named Vocab-AM and Vocab-GM, respectively.

Implementation: Following the setup in Berg-Kirkpatrick and Spokoyny (2020), our base language
model is 12-layer BERT-base and we fine-tune all models with a batch-size of 32 for 10 epochs. We
use early stopping with a patience of three on the validation loss. We use two learning rates 3e-5 and
1e-2 for all pretrained parameters and newly added parameters respectively. For legibility, we skip
variance estimates (bootstrapped over 10 samples, each of size 75% of the test set) in Table 1 – they
range from 1e-7 to 1e-5. Please see Appendix A.3 for more details.

4 Results
We bold-face the best and underline the next best LogMAE scores in each column (dataset), and we
highlighted exponent accuracies that are within 99% confidence of the SotA E-Acc. NA denotes
subword models which were unable to emit valid numbers for at least 50% of the examples.

Intrinsic results (Table 1) We find that the straightforward, change of notation approaches are
inferior to the subword baseline. This is in contrast to prior work on extrapolating the arithmetic
abilities of language models by notation changes (Nogueira et al., 2021; Geva et al., 2020). It suggests
that simple pre-processing changes of notation are not sufficient for contextual understanding of
numbers for language modeling. Next, we find that the vocabulary change methods (Vocab-AM/GM)
are at par or better than the architectural change model (DExp). The improvement from subword to
the DExp model, is achievable (within statistical bounds) without modelling the mantissa at all!
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Fermi-Real trained on FinNews trained on FinNews-$ trained on SciDocs
510 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Sub-Pad8 26± 5% 2.38 16± 4% 3.17 26± 5% 2.84
Dig-Pad17 19± 5% 2.58 NA NA 23± 5% 2.87
Sci-Pad8 25± 5% 2.93 NA NA 20± 5% 2.75
Vocab-AM 32± 5% 2.19 24± 5% 2.42 27± 5% 2.42
DExp 32± 5% 2.13 25± 5% 2.51 28± 5% 2.40

Fermi-Syn trained on FinNews trained on FinNews-$ trained on SciDocs
3437 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓
Sub-Pad8 29± 2% 2.89 19± 2% 3.25 39± 2% 2.83
Dig-Pad17 23± 2% 2.93 NA NA 41± 2% 2.87
Sci-Pad8 26± 2% 3.06 NA NA 27± 2% 2.76
Vocab-AM 39± 2% 2.61 41± 2% 2.42 48± 2% 2.52
DExp 39± 2% 2.44 41± 2% 2.44 48± 2% 2.48

Table 2: Downstream performance of main methods over fact estimation for solving Fermi Problems.

Downstream transfer (Table 2) Given such trends in masked number prediction, we are interested
in the utility of these models on a downstream number prediction task. For this purpose, we evaluate
on numerical fact estimation using the Fermi Problems dataset (Kalyan et al., 2021)1, which consists
of challenging estimation problems such as “How many tennis balls fit in a school bus?” Solving
such questions require estimating numeric facts e.g. volume of tennis ball & length of bus.

We evaluate our models (trained with different number decoders on one of the three datasets) in a
zero-shot setting on such annotated facts provided as part of both the real and synthetic datasets part
of the Fermi problem dataset. The task setup is of masked number prediction as before, e.g., “the size
of a tennis ball is [MASK] cubic centimeters." We find similar trends as before i.e. change of notation
is insufficient while vocabulary-change approaches are equal or better than architectural changes –
highlighting that most of the gains could be retained by simply tokenizing in number space.

5 Related work
The NLP community has recently proposed several ways of improving the numeracy of language
models, including architectural and notation interventions. Several such methods are aimed at helping
LMs extrapolate easily to larger numbers (Kim et al., 2021) or for improving their arithmetic skills
(Nogueira et al., 2021). We restrict our analysis to the task of approximately decoding numbers in
MNP setting, which requires different methods and metrics from the tasks that instead evaluate their
exact arithmetic skills (Thawani et al., 2021b).

The method we highlight in this paper i.e. change of vocabulary to tokenize numbers on a log-scaled
number line, has been previously used in different settings. Others have shown the benefits of using
such exponent embeddings as number encoders for language models, whether it be for the task
of masked number prediction (Berg-Kirkpatrick and Spokoyny, 2020) or masked word prediction
(Thawani et al., 2021a). Our work extends these results with further evidence of the representational
power gained by simply tokenizing numbers on the number line.

6 Conclusion
Subword tokenization, the standard approach to representing numbers leads to inaccurate numerical
understanding. In this work, we analyze number representation approaches that make notational
(e.g. scientific vs. decimal), vocabulary (i.e. tokenizing on the number line), and architectural changes
(i.e. regressing to the number). We find that tokenization on the number line achieves near or better
than state-of-the-art results while requiring minimal resources as opposed to making architectural
changes. This finding allows language models to conveniently improve their numeracy, including
cases where users may not have access to the model’s architecture and are only provided a typical
finetuning regime with small changes to the tokenizer’s vocabulary. Finally, we find similar trends
in the challenging setting of numerical fact estimation for solving Fermi Problems – indicating that
vocabulary-change is sufficient to represent approximate numbers effectively and with minimal effort.

1Accessible at https://allenai.org/data/fermi with CC BY License.
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Input FY2018 Earnings per share view Daniels maintains Cohen paid her $130000 via essential
$ [MASK] , revenue view . . . consultants to hush up a [MASK] s. encounter with Trump.

True 1.63 2006

Sub 1000000 1
DExp 2.695 2792.66
Ours 1-10 1k-10k

Table 3: Example predictions from FinNews dev set. Ours (Vocab-GM) and DExp estimate numbers
in the same order of magnitude as ground truth; but the subword baseline (Sub) is far off.

Figure 2: Histogram of mantissas for the 58K sentences in FinNews dev set (true) and corresponding
predictions by DExp (pred). See Section 4 for details.

A Appendix

A.1 Implementation Details

Each of our experiments took a few hours on NVIDIA Quadro RTX 8000 GPU (one per experiment).
We report results on the same random seed across models. We were able to reproduce DExp result
scores exactly up to 1 decimal place. Note that we only compare number decoders and not the
encoders – therefore, when numbers are present in the input, standard encoding schemes are used. For
approaches with changes to vocabulary and architecture, we follow (Berg-Kirkpatrick and Spokoyny,
2020) and use exponent embeddings to encode numbers (with no shared parameters with the decoder’s
tokens) and for approaches with notation changes, we use subword tokenization.

The key contribution of this work is to highlight the possibility of achieving near state-of-the-art
results from Berg-Kirkpatrick and Spokoyny (2020) with a much simpler method. Thus, we used the
same hyperparameters and extend their code2 for most of our experiments. Please refer to Section 3
in their paper for dataset details.

With scientific notation, a previous approach NumBERT (Zhang et al., 2020) denotes 329 as 329
[EXP] 2. However, we find that representing the same instead as 3x29 where ‘x’ is the common
English alphabet, works better in practice.

A.2 Example predictions

Finally, Table 3 shows some representative examples from FinNews dataset where the Subword
baseline’s estimate is far off from the ground truth, whereas predictions of both DExp and Vocab-GM
are within the correct order-of-magnitude.

A.3 Comparing Mantissas

To study why Vocabulary change is nearly as good as Regression, we dig deeper into the only
component that differentiates our proposed Vocab-AM/GM models from the state-of-the-art DExp:

2https://github.com/dspoka/mnm
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FinNews FinNews-$
Metrics E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓
Vocab-AM 74.40 0.65 57.14 0.93
Vocab-GM 73.70 0.60 56.99 0.92
DExp-21 72.2 0.51 47.6 1.04
DExp 74.56 0.50 57.50 0.89

Table 4: Comparing variable sized numeric vocabulary (Vocab-21) with static variants and architecture
change (DExp) shows no gains, except in LogMAE over Financial News dataset. See §A.4 for details.

mantissas. We plot the mantissas from DExp’s predictions against the ground truth (FinNews dev set)
in Figure 2. We find that in the naturally occurring datasets, the leading digit of numbers is likely to
be small (Benford’s Law) and the mantissa peaks around 2, owing to the frequent mentions of years
(2000−2022) from our current millennium (recency bias). This rather simple distribution of numbers
in the real world helps our static Vocab-AM/GM models perform at par with the state-of-the-art DExp
without making any architectural changes to the underlying language model.

A.4 Variable Length Binning

Motivated by the success of frequency-based surface-level vocabulary, we further experiment with an
extension of the vocabulary change. Instead of collapsing numbers into order-of-magnitude or expo-
nent bins which are equally spaced on the log scale, we find bins such that their overall frequencies in
a corpus are more uniform. By arranging all numbers from the FinNews corpus in ascending order and
dividing them into equal sized (by frequency) bins, we get the following variable length vocabulary:
1, 2, 3, 4, 6, 10, 14, 21, 30, 31, 70, 415, 2011, 2017, 2018, 5131, 30207, 252178, 1700000, 30000000,
1152337024. With these 21 bins3, we retrain the Vocab-AM method and compare with our earlier
static bins which corresponded to powers of 10: 1, 10, 100, . . ..

Table A.4 shows the results on both FinNews and FinNews-$ datasets. We observe that this vocabulary,
despite having a more uniform distribution of numbers, does not do any better than the original
naive method (except on LogMAE over the FinNews dataset). We note this as further evidence
of the robustness of merely tokenizing on the number line. If variable sized bins were crucial
for strong performance, practitioners may have had to relearn the model’s numeric vocabularies
based on different datasets and corpus frequencies. On the other hand, the order-of-magnitude-10
vocabulary is a simple, intuitive and robust method that competes with performance of state-of-the-art
architectural-change number decoders.

A.5 Neuron Probing

In this subsection, we further probe how numeracy is stored in the feed forward layers of language
models. Previous work along these lines (Geva et al., 2021) have shown promise in interpreting the
knowledge stored in language models by finding individual neurons in feed forward layers that are
triggered by specific patterns of input. We apply this analysis to find some such neurons, if any, which
can effectively and efficiently capture the magnitude of a masked number.

Figure 3 shows the Precision-Recall curves for the state-of-the-art DExp model on the task of
predicting masked numbers has an exponent of 3, i.e. it is between 1000 and 10,000. We say a
neuron has been triggered if it is among the top 50 activated ones (out of 3072) in that layer for the
input mask token. Recall is then defined as the fraction of times when this neuron was triggered for
all masked numbers with an exponent of 3. Precision is defined as the fraction of times when the
exponent was 3 for all the times that the specific neuron was triggered. We find that some individual
neurons, such as the 650th neuron in the 10th layer of finetuned DExp has a very high precision and
recall. It alone can predict whether the order of magnitude is 3, with an F1 score of above 0.7.

The presence of such precise individual neurons that capture order-of-magnitude numeracy in DExp
model further suggests why tokenizing the number line on the log scale is a naturally suited number
representation. This analysis shows promise in interpreting results of number representations in
language models and possibly even causing interventions to update its beliefs (Dai et al., 2022).

3We manually tune this hyperparameter so as to obtain a near-uniform distribution of number occurrences.
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Figure 3: Precision Recall curve for the state-of-the-art (architecture-change) DExp model on the
task of predicting masked numbers has an exponent of 3, i.e. it is between 1000 and 10,000. See
Section A.5 for details.

9



B Limitations

Our findings and recommendations may not apply beyond the English language and the Hindu-Arabic
Numeral system, which are by no means the only language / number systems in use today. We
encourage follow-up work to take other systems into consideration, on the lines of Johnson et al.
(2020) and Nefedov (2020).

Our recommended method of tokenizing on the number line is lossy by design. It collapses several
numbers into large discrete bins, and is unlikely to be suitable for exact numeracy as is required
for, say, math word problems. We note that an ideal number representation should capture both
approximate and exact numeracy.
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