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Abstract

We propose a novel, fully explainable neural approach to synthesis of combinatorial
logic circuits from input-output examples. The carrying advantage of our method1

is that it readily extends to inductive scenarios, where the set of examples is incom-
plete but still indicative of the desired behaviour. Our method can be employed
for a virtually arbitrary choice of atoms – from logic gates to FPGA blocks – as
long as they can be formulated in a differentiable fashion, and consistently yields
good results for synthesis of practical circuits of increasing size. In particular, we
succeed in learning a number of arithmetic, bitwise, and signal-routing operations,
and even generalise towards the correct behaviour in inductive scenarios. Our
method, attacking a discrete logical synthesis problem with an explainable neural
approach, hints at a wider promise for synthesis and reasoning-related tasks.

1 Introduction

Logic circuit synthesis is the process of producing a logic circuit that satisfies a given specification and
is a classical problem in computer science. The synthesis of high-level designs to circuits is typically
done as direct compilation of hardware description language code coupled with post-processing
optimisation [1, 13], although recent work hints at that there exists room for merging the two by the
use of neural compiler architectures [15]. Transformer-based neural architectures have also been used
for comprehension of linear temporal logic [9], its synthesis (as the input, high-level specification)
into circuits [16], and the understanding of abstract mathematical patterns more generally [2].

Synthesising logic circuits from input-output listings, on the other hand, falls under the paradigm of
programming by example. If the listings are incomplete (i.e. not all possible inputs are considered)
but indicative of the desired behaviour, one talks of circuit induction. Note that a well-posed instance
of circuit induction still has a unique desired behaviour for the target circuit but is nevertheless more
difficult, since any attempt to address it has to incorporate the guiding assumptions while relying on
example data that may potentially contradict some interpretations of these assumptions.

We focus on the synthesis of combinatorial logic circuits from input-output examples. This old
problem of theoretical interest to mathematical logic [7, 5] has recently been enjoying a small
renaissance due to plethora of specific machine-learning applications [4, 6, 8, 11, 14, 12]. The
traditional synthesise-and-optimise approaches [10] do not scale well and and are not applicable
for later deployment on modern, by design already heavily optimised hardware. Further, it is often
far from practical to describe the desired circuit in terms of input-output examples completely, and
there is therefore an appetite for methods that could induce the correct behaviour from a few guiding
examples, or query the user interactively.

To this end, we present a new method for synthesising circuits for combinatorial behaviour utilising
any appropriately formulated design of atomic unit. It is in the design of this unit where the user

1We make all our code and data available at https://github.com/pbelcak/neccs.
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may choose to incorporate their implicit inductive assumptions, say in the form of making certain
operations readily available (so that they need not be learned) or initialising decision weights in favour
of particular configurations. Our method relies on a neural-network-like layout of atomic units and
admits training with gradient descent and loss, as is common in deep learning. In situations where
some examples are missing from the input-output specification, our method manages to incorporate
the implicit design bias of the atoms to generalise well to previously unseen inputs, which is in its
own right a challenging problem for classical deep neural networks [3].

As a broader message of this workshop contribution, we wish to suggest that with appropriate
architectures and inductive biases in place, neural methods can feasibly be used to tackle traditionally
strictly discrete and reasoning-heavy problems such as circuit synthesis while achieving high levels
of accuracy and possessing full model explainability through its outputs. We further believe that
neural methods may be the natural choice for situations where inductive assumptions need to be
incorporated into the synthesis and reasoning processes.

Formal setting. Let f : {0, 1}wi → {0, 1}wo be a Boolean function and let D :=
{(x, f (x)) : x ∈ {0, 1}wi} be the dataset of all input-output pairs. We call the task of constructing a
circuit C from D such that C(x) = f(x)∀x ∈ {0, 1}wi circuit synthesis from (complete) examples.
If, instead of D, we are given D′ ⊂ D, constructing C from D′ is called circuit induction.

2 Method

Our method can be used to address both the task of circuit synthesis and induction. It encompasses
the translation of discrete logical units such as traditional logic gates or FPGA blocks, and the
feed-forward combinatorial differentiable wiring technique that allows connections to emerge based
on need.

Given these logical units, the challenge of the traditional circuit synthesis is to make an appropriate
choice of available units and then wire them in a fashion that leads to correct functionality. In contrast,
our method relies on a single choice of the universal unit type that is made before the synthesis.

2.1 Logical Units from Differentiable Operators

For given differentiable input signal lines i1, i2 ∈ [0, 1] ⊂ R, the basic logical operations such as
NOT, AND, OR, or XOR can be readily translated to their differentiable counterparts as 1− i1, i1i2,
i1 + i2, i1(1 − i2) + i2(1 − i1), respectively. As any Boolean function f : {0, 1}wi → {0, 1}wo

can be represented as a network of a subset of these gates, such f may also be differentiably
implemented simply by composing the individual gates’ differentiable counterparts appropriately.
Thus, any Boolean function representing a combinatorial circuit can be implemented with the use of
differentiable operators.

Unlike the traditional synthesis setting where the algorithm has to make the choices of which unit to
use and what to connect it with to ensure correctness, we decide to use only units that are universal
in the sense that a homogeneous network of such properly configured units can represent any f as
above. Note that our approach to network building (cf. Section 2.2) extends to the scenario where
multiple types of units are to be interconnected, but such situations raise the problem of arrangement
of heterogeneous units into network layers so that an arbitrary function can still be learned.

We consider three chosen types for the universal unit, namely the and-inverter gate (AIG), 4-to-1
look-up table (LUT), and the corresponding 4-to-1 LUT-adder block (LAB).

And-inverter gate. The (2-bit) AIG simply computes 1− i1i2 for input signals i1, i2 as above.

Look-up table. Our LUT is a continuous variant of look-up tables commonly found in field-
programmable gate arrays [10] and consists of a 16-dimensional learned (bias) tensor T arranged
into four axes corresponds to a filtering decision on the four inputs to compose the final output. Let i
be the vector of inputs, denote I a list of indices, 0 ≤ |I| its length, and ϵ the empty list. Then the
output of the lookup operation LUT (i) can be computed as

LUT (i) := LUT (i, ϵ)

LUT (i, I) := i1+|I|LUT (i, I:1) +
(
1− i1+|I|

)
LUT (i, I:0) for |I| < 4

LUT (i, I) := T [I] for |I| = 4
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Figure 1: An illustration of the universal unit arrangement (U) and softmax-choice wiring as described
in Section 2.2. Mimicking residual connections from convolutional neural networks, the outputs of
all previous layers of universal units are combined and then offered for connection to the current
layer. The output of the last layer is either hardwired or selected by constant attention to yield the
outputs of the network.

where I:n denotes the list formed by appending n to I and T [I] denotes the indexing the four-axis
table tensor T by the four indices (deterministic; either 0 or 1) listed by I in order.

LUT-adder block.

The LAB is a LUT combined with a 1-bit full adder, and its output is decided as a learned softmax
choice (constant attention) over the two outputs of the adder (including carry) and the one output of
the LUT. The adder, which is learnably an option for the output of the LAB unit, is an example of an
architectural inductive bias towards addition. Let c be the learned parameter vector for the constant
attention α, i vector of inputs as above, and let α := softmax (c). Then

LAB (i) := α1 (Σ mod 2) +α21Σ≥2 +α3LUT (i) for Σ := i1 + i2 + i3,

where σ denotes the sum of the carry-in and the two inputs, and 1condition is the binary indicator
function yielding 1 if the condition is satisfied and 0 otherwise.

2.2 Softmax-Choice Wiring

We stack universal units in layers 1 ≤ k ≤ ℓ of widths wk. For simplicity, we refer to the inputs of
the network as the 0th layer and have w0 := wi. Let ik,mp be the pth input of the mth unit in layer
k ≥ 1 where 1 ≤ m ≤ wk, and let ok,m be the output of the mth unit in layer k ≥ 0. Then, for each
k ≥ 1 and m, p as above, the pth input of the mth unit in the kth layer is computed as

ik,mp :=

k−1∑
l=0

wl∑
n=1

ol,nsoftmax
(
ck,m,p

)
l,n

,

where ck,m,p is a learned bias matrix of dimension k ×max0≤l<k wl and the softmax is computed
over both dimensions.

In other words, every input to a unit is computed by applying constant attention to the outputs of
all the previous layers, input layer included. Finally, outputs of the last layer are designated as the
outputs of the network. This can be done by hard-wiring a selection of unit outputs to the wo network
outputs, or by simply adding one more layer of wo softmax choices. The entire wiring approach is
depicted in Figure 1.

2.3 Output Loss and Sharpening Softmax Loss

We use per-signal binary cross entropy loss to compute the loss on the outputs of the network.
Further, since we implicitly expect every softmax signal selection (both within units and wiring
between units) to eventually rely only on a single output, we added a sharpening entropy loss,
controlled by a hyperparameter σ. More specifically, for an n-dimensional softmax choice s, we
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compute H (s) =
∑n

m=1 −sm log sm. It is the sharpening loss that forces all softmax choices to
eventually become 0 or 1, warranting explainability when inspecting the networks after the training
concludes. The total training loss for true example outputs oT given prediction outputs oP is then
loss (oT,oP) := BCE (oT,oP) + σ

∑
s∈S H (s) , where S is the set of all softmax choices made

within the network. Once the training has concluded, the synthesised network can be read out using
the procedure described in Appendix B.

3 Evaluation

We evaluate our method on datasets comprising input-output examples for a number of tasks, namely:
arithmetic negation, subtraction, addition, multiplication, long division, remainder computation,
bitwise and, or, xor, not, bit shifts left and right, line multiplexing, de-multiplexing, decoding, and
priority encoding. These were inspired by [14]. Each task is described in detail in Appendix A.

Two training datasets, EC-2-100 and EC-4-100, are formed from the examples for the above tasks
where the key inputs or outputs are 2 bits and 4 bits wide, respectively. Four more testing datasets
are then generated by leaving out 5% and 10% of the examples for each training dataset. Thus,
we consider six datasets in total, four of which test the ability of the given network to generalise
already-seen behaviour to previously unseen inputs. We denote these datasets by strings of the form
EC-width-ccc, where EC stands for “elementary circuits”, w denotes width and is 2 or 4, and ccc
(denoting completeness) is 100 (all examples), 95 (5% dropped out), or 90.

We find that the choice of the universal unit significantly influences the accuracy of the method.
AIG and LUT networks have the best and worst accuracy scores, respectively. Moreover and
perhaps surprisingly, the best-performing LUT configurations did not respond to the changes to the
proportion of training examples being left out. This suggests that the LUT networks may be implicitly
internalising the desired functionality in the loss minimisation process, relying on the broader picture
of the behaviour rather than individual example pairs.

LUT-adder blocks are the only type of universal unit we considered with explicitly incorporated bias
towards the tasks. We observe that their performance is only slightly lower than that of LUTs, likely
due to the higher number of learnable parameters, but that it increases with the decreasing number of
training examples. This can be interpreted as the LABs finding it easier to learn inductive behaviour
than its peers, and easier against its own performance when only few key examples are provided.

In sum, the performance of LUTs suggests that even neural networks tailored to a specific purpose
show signs of developing an high-level picture of the task, while the performance of LABs shows
the utility of architecturally incorporating implicit knowledge about the task at hand for its inductive
performance on discrete, logical tasks.

Dataset Metric Type Universal Unit Type

2-bit AIG 4-bit LUT 4-bit LAB

EC-2-100 signal 0.956 0.969 0.961
example 0.930 0.953 0.938

EC-2-95 signal 0.956 0.969 0.964
example 0.922 0.953 0.941

EC-2-90 signal 0.941 0.969 0.969
example 0.898 0.953 0.969

EC-4-100 signal 0.925 0.967 0.952
example 0.778 0.889 0.849

EC-4-95 signal 0.923 0.967 0.960
example 0.735 0.889 0.868

EC-4-90 signal 0.922 0.967 0.967
example 0.723 0.889 0.889

Table 1: The results of a systematic evaluation of our method on the datasets. Emphasis and emphasis
mark the best results per dataset and per-unit, respectively. Each experiment was run with 20 different
configurations but training and initialisation seeds fixed, as described in Appendix C.
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A Tasks of the EC-w-100 Datasets

A number of bitwise, arithmetic, and signal control learning tasks form the complete datasets of width
w. We refer to the individual training instances as tasks, since they specify behaviour that is to be
learned from input-output examples. The behaviour of each task is given as a sequence of (x, y) pairs,
where x is a binary vector that is to be fed into logic circuit, and y is the binary output representing
the desired output for input x. The dimensions of vectors x, y depend on the task and on w.

A.1 Bitwise Operations

A.1.1 Bit Negation

The dimension of both x and y is exactly w. The input-output pairs for this task give the behaviour of
a w-bit logical NOT gate. For example, for x = 10112, y = 01002.

A.2 Bitwise AND, OR, and XOR

The dimension of x is 2w, the dimension of y is w. The input-output pairs describe the behaviour of
the w-bit AND/OR/XOR gate, performing the operation on the two w-bit slices of x. For example,
AND (1011201102) = 00102.

A.3 Unsigned Bit Shift to the Left/Right

The dimension of both x and y is exactly w. The input-output pairs are given by shifting x to the
left/right by one bit and filling the empty bit with 0. As an example, SHL (10112) = 01102.

A.4 Arithmetic Operations

A.4.1 Arithmetic Negation

The dimension of both x and y is exactly w. The task is to perform arithmetic negation (in the two’s
complement system for bit width w). This is equivalent to performing the ones’ complement and then
adding 1, e.g. NET (11102) = 00102.

A.4.2 Arithmetic Addition and Subtraction

The dimension of x is 2w, the dimension of y is w + 1. The task is to perform arithmetic addi-
tion/negation, with negative numbers represented in the two’s complement system of widths w, w+ 1
for inputs and outputs, respectively. The w + 1st bit is the carry/borrow bit, respectively. As an
example, SUB (0001211102) = 000112.

A.4.3 Arithmetic Multiplication

Both x and y are of dimension 2w. Unsigned arithmetic multiplication is performed on the individual
slices of x. For example, MUL (0011211102) = 001010102 because 3× 14 = 42.

A.4.4 Integral Division and Remainder (Modulo)

The dimension of x is 2w, the dimension of y is w. The output is the output of unsigned long
division (remainder) of the value of the first w-bit slice of x by the value of the second. For example
DIV (0110200112) = 00112,REM (0110200112) = 00012.

A.5 Signal Control

A.5.1 w-to-1 Multiplexer

The dimension of x is w + ⌊log2 w⌋, the dimension of y is 1. The first w-bit slice of x contains the
multiplexer’s input signals. The remaining slice of x contains the value deciding which of the signals
to output, with the lines being numbered from 0. For an example with w = 5, to choose the 3rd signal
from 011012, MUX (01112112) = 02. The value of the binary logarithm is rounded to avoid having
to specify undefined behaviour.
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A.5.2 1-to-w Demultiplexer

The dimension of x is 1+ ⌊log2 w⌋, the dimension of y is w. The value of the slice of x that runs from
the second bit onwards describes which output line (numbering from 0) to forward the input signal
(stored in the first bit of x) to. The remaining output lines are set to 0. As an example for w = 4,
DEMUX (12112) = 10002.

A.5.3 ⌊log2 w⌋-to-w Line Decoder

The dimension of y is w, the dimension of x is ⌊log2 w⌋. The line decoder drives the xth output line
to 1 and all the remaining lines to 0, as in DEC (102) = 01002 for w = 4.

A.5.4 w-to-⌈log2 w⌉ Priority Encoder

The dimension of x is w, the dimension of x is ⌈log2 w⌉. The priority encoder takes the w signals of x
as inputs and outputs binary value representing the position (numbered from 0) of the first non-zero
line on its input. For an example with w = 5, ENC (001102) = 0012.
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B Explainability – Reading Out the Learned Network Logic

Once the training has concluded and the sharpening loss has converged, one can proceed to read out
the synthesised network logic as described below.

Initialisation. If the selector had been used, its softmax choices (now sharp – either 0 or 1 per signal
line) are used to find the output units O. If it had not been used, the O is set to the hard-wired output
units.

Wire identification. In line with the notation and definitions of Section 2.2, define the wire presence
indicator ω (U,U ′, p′) for U,U ′ units of the network used for training as

ω
(
Uk,m, Uk′,m′

, p′
)
:=

{
1 if softmax

(
ck

′,m′,p′
)
k,m

> τ

0 otherwise
,

where τ ∈ (0, 1) is a threshold for the softmax values for which the wire is to be considered present.
In our experimentation, we found that the appropriate threshold depends on the values of σ, learning
rate, and the number of epochs (“tightness” of convergence), but could usually comfortably be 0.95
or above.

Put in words, ω (U1, U2, p) = 1 means that the output of U1 is connected to the p-th input of U2 in
the synthesised network.

Network Extraction. With ω defined as above, the units U used by the synthesised network can be
extracted recursively as follows:

U0 := O

Ui :=
{
Uk,m : ∃k′,m′, p′∃k < k′∃1 ≤ m ≤ wk s.t. ω

(
Uk,m, Uk′,m′

, p′
)
= 1

}
for 1 ≤ i ≤ ℓ+ 1

U :=

ℓ+1⋃
i=0

Ui

Then the pair (U , ω) gives the synthesised network.
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C Training and Testing Configurations

C.1 Train-Test Splits

Given the nature of the tasks considered, the training and test dataset are largely the same, depending
on the situation.

For EC-2-100 and EC-4-100, the two sets are identical. For all other datasets EC-w-cc, the networks
are trained on EC-w-100 and EC-w-100 and then tested on a fixed subset EC-w-cc, where is the
percentual proportion of the examples of EC-w-100 that were retained for testing.

C.2 Architecure

For each unit and each task in each dataset, we considered a maximum of 4 layers of 40 units for
the network to emerge through softmax choices. Half of our configurations further added softmax
selections for the outputs of the final layer as per Section 2.2.

Overall, we observed improvements in performance for AIG networks that had the softmax output
selectors but performance deterioriation for LUT and LAB networks in the corresponding configura-
tions.

C.3 Initialisation and Data Shuffle Seeds

These were fixed, with the particular choices detailed in the code.

C.4 Training Parameters and Hyperparameters

A total of 20 configurations was considered for the test runs, and each run was run for a maximum of
100 epochs with early stopping for when the perfect accuracy of 1 has been achieved.

The fixed batch sizes lied in [4, 16], learning rates in (0.1, 0.6), learning rate exponential decay factors
in (0.9, 1.0). We used the Adam optimiser.

After initial experimentation, we fixed σ = 1.0, but engaged it only in the second half of the training
(i.e. after 50 epochs).

C.5 Computational Resources

Each of our experiments was run on a single core of a cluster of Dual Deca-Core Intel Xeon E5-2690
v2 processors and fit within 10 GiB of RAM memory. In this setup, all experiments terminated within
12 hours.
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